Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kurt Redlich is active.

Publication


Featured researches published by Kurt Redlich.


Journal of Clinical Investigation | 2002

Osteoclasts are essential for TNF-α–mediated joint destruction

Kurt Redlich; Silvia Hayer; Romeo Ricci; Jean-Pierre David; Makiyeh Tohidast-Akrad; George Kollias; Günter Steiner; Josef S Smolen; Erwin F. Wagner; Georg Schett

The detailed cellular and molecular mechanisms leading to joint destruction in rheumatoid arthritis, a disease driven by proinflammatory cytokines, are still unknown. To address the question of whether osteoclasts play a pivotal role in this process, transgenic mice that express human TNF (hTNFtg) and that develop a severe and destructive arthritis were crossed with osteopetrotic, c-fos-deficient mice (c-fos(-/-)) completely lacking osteoclasts. The resulting mutant mice (c-fos(-/-)hTNFtg) developed a TNF-dependent arthritis in the absence of osteoclasts. All clinical features of arthritis, such as paw swelling and reduction of grip strength, progressed equally in both groups. Histological evaluation of joint sections revealed no difference in the extent of synovial inflammation, its cellular composition (except for the lack of osteoclasts), and the expression of matrix metalloprotein-ase-3 (MMP-3) and MMP-13. In addition, cartilage damage, proteoglycan loss, and MMP-3, -9, and -13 expression in chondrocytes were similar in hTNFtg and c-fos(-/-)hTNFtg mice. However, despite the presence of severe inflammatory changes, c-fos(-/-)hTNFtg mice were fully protected against bone destruction. These data reveal that TNF-dependent bone erosion is mediated by osteoclasts and that the absence of osteoclasts alters TNF-mediated arthritis from a destructive to a nondestructive arthritis. Therefore, in addition to the use of anti-inflammatory therapies, osteoclast inhibition could be beneficial for the treatment of rheumatoid arthritis.


Circulation | 2004

Osteoprotegerin Is a Risk Factor for Progressive Atherosclerosis and Cardiovascular Disease

Stefan Kiechl; Georg Schett; Gregor K. Wenning; Kurt Redlich; Martin Oberhollenzer; Agnes Mayr; Peter Santer; Josef S Smolen; Werner Poewe; Johann Willeit

Background—Osteoprotegerin is a novel member of the tumor necrosis factor receptor superfamily and a soluble decoy receptor of the receptor activator of nuclear factor-κB ligand. Recent experimental research has implicated osteoprotegerin in atherogenesis, but epidemiological confirmation of this concept is sparse. Methods and Results—As part of the prospective, population-based Bruneck Study, severity, initiation, and progression of atherosclerosis were assessed in carotid arteries. Cases of incident cardiovascular disease and vascular mortality were carefully recorded over a 10-year period (1990 to 2000). Osteoprotegerin levels were measured in samples obtained at baseline and during follow-up. Serum osteoprotegerin showed a strong association with numerous vascular risk factors, including age, diabetes, markers of systemic inflammation, chronic infection, and smoking. In multivariate analyses, osteoprotegerin was significantly related to severity and 10-year progression of carotid atherosclerosis. Furthermore, a high level of osteoprotegerin was an independent risk factor for incident cardiovascular disease (adjusted relative risk for the top versus bottom tertile group for osteoprotegerin 2.2 [1.3 to 3.8]; P =0.001) and vascular mortality (adjusted relative risk for the top versus bottom tertile group for osteoprotegerin 3.1 [1.2 to 8.2]; P =0.010) but not for mortality due to nonvascular causes. Conclusions—Osteoprotegerin is an independent risk factor for the progression of atherosclerosis and onset of cardiovascular disease.


Arthritis & Rheumatism | 2000

Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal–regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis

Georg Schett; Makiyeh Tohidast-Akrad; Josef S Smolen; Beatrice Jahn Schmid; Carl-Walter Steiner; Peter Bitzan; Peter Zenz; Kurt Redlich; Qingbo Xu; Günter Steiner

OBJECTIVE To investigate whether stress- and mitogen-activated protein kinases (SAPK/MAPK), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK, are significantly activated in rheumatoid arthritis (RA) synovial tissue compared with their activation in degenerative joint disease; to assess the localization of SAPK/MAPK activation in rheumatoid synovial tissue; and to search for the factors leading to stress kinase activation in human synovial cells. METHODS Immunoblotting and immunohistology by antibodies specific for the activated forms of SAPK/MAPK were performed on synovial tissue samples from patients with RA and osteoarthritis (OA). In addition, untreated and cytokine-treated human synovial cells were assessed for SAPK/MAPK activation and downstream signaling by various techniques. RESULTS ERK, JNK, and p38 MAPK activation were almost exclusively found in synovial tissue from RA, but not OA, patients. ERK activation was localized around synovial microvessels, JNK activation was localized around and within mononuclear cell infiltrates, and p38 MAPK activation was observed in the synovial lining layer and in synovial endothelial cells. Tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6 were the major inducers of ERK, JNK, and p38 MAPK activation in cultured human synovial cells. CONCLUSION Signaling through SAPK/MAPK pathways is a typical feature of chronic synovitis in RA, but not in degenerative joint disease. SAPK/MAPK signaling is found at distinct sites in the synovial tissue, is induced by proinflammatory cytokines, and could lead to the design of highly targeted therapies.


Annals of the Rheumatic Diseases | 2014

Treating spondyloarthritis, including ankylosing spondylitis and psoriatic arthritis, to target: recommendations of an international task force

Josef S Smolen; J. Braun; Maxime Dougados; Paul Emery; Oliver FitzGerald; Philip S. Helliwell; Arthur Kavanaugh; Tore K. Kvien; Robert Landewé; Thomas A. Luger; Philip J. Mease; Ignazio Olivieri; John D. Reveille; Christopher T. Ritchlin; Martin Rudwaleit; Monika Schoels; Joachim Sieper; Martinus de Wit; Xenofon Baraliakos; Neil Betteridge; Ruben Burgos-Vargas; Eduardo Collantes-Estevez; Atul Deodhar; Dirk Elewaut; Laure Gossec; Merryn Jongkees; Mara Maccarone; Kurt Redlich; Filip Van den Bosch; James Cheng-Chung Wei

Background Therapeutic targets have been defined for diseases like diabetes, hypertension or rheumatoid arthritis and adhering to them has improved outcomes. Such targets are just emerging for spondyloarthritis (SpA). Objective To define the treatment target for SpA including ankylosing spondylitis and psoriatic arthritis (PsA) and develop recommendations for achieving the target, including a treat-to-target management strategy. Methods Based on results of a systematic literature review and expert opinion, a task force of expert physicians and patients developed recommendations which were broadly discussed and voted upon in a Delphi-like process. Level of evidence, grade and strength of the recommendations were derived by respective means. The commonalities between axial SpA, peripheral SpA and PsA were discussed in detail. Results Although the literature review did not reveal trials comparing a treat-to-target approach with another or no strategy, it provided indirect evidence regarding an optimised approach to therapy that facilitated the development of recommendations. The group agreed on 5 overarching principles and 11 recommendations; 9 of these recommendations related commonly to the whole spectrum of SpA and PsA, and only 2 were designed separately for axial SpA, peripheral SpA and PsA. The main treatment target, which should be based on a shared decision with the patient, was defined as remission, with the alternative target of low disease activity. Follow-up examinations at regular intervals that depend on the patients status should safeguard the evolution of disease activity towards the targeted goal. Additional recommendations relate to extra-articular and extramusculoskeletal aspects and other important factors, such as comorbidity. While the level of evidence was generally quite low, the mean strength of recommendation was 9–10 (10: maximum agreement) for all recommendations. A research agenda was formulated. Conclusions The task force defined the treatment target as remission or, alternatively, low disease activity, being aware that the evidence base is not strong and needs to be expanded by future research. These recommendations can inform the various stakeholders about expert opinion that aims for reaching optimal outcomes of SpA.


Nature Reviews Drug Discovery | 2012

Inflammatory bone loss: pathogenesis and therapeutic intervention

Kurt Redlich; Josef S Smolen

Bone is a tissue undergoing continuous building and degradation. This remodelling is a tightly regulated process that can be disturbed by many factors, particularly hormonal changes. Chronic inflammation can also perturb bone metabolism and promote increased bone loss. Inflammatory diseases can arise all over the body, including in the musculoskeletal system (for example, rheumatoid arthritis), the intestine (for example, inflammatory bowel disease), the oral cavity (for example, periodontitis) and the lung (for example, cystic fibrosis). Wherever inflammatory diseases occur, systemic effects on bone will ensue, as well as increased fracture risk. Here, we discuss the cellular and signalling pathways underlying, and strategies for therapeutically interfering with, the inflammatory loss of bone.


Proceedings of the National Academy of Sciences of the United States of America | 2007

TNF-induced structural joint damage is mediated by IL-1

Jochen Zwerina; Kurt Redlich; K. Polzer; L.A.B. Joosten; Gerhard Krönke; J. Distler; A. Hess; Thomas Pap; O. Hoffmann; J. Gasser; Clemens Scheinecker; Josef S Smolen; W.B. van den Berg; Georg Schett

Blocking TNF effectively inhibits inflammation and structural damage in human rheumatoid arthritis (RA). However, so far it is unclear whether the effect of TNF is a direct one or indirect on up-regulation of other mediators. IL-1 may be one of these candidates because it has a central role in animal models of arthritis, and inhibition of IL-1 is used as a therapy of human RA. We removed the effects of IL-1 from a TNF-mediated inflammatory joint disease by crossing IL-1α and β-deficient mice (IL-1−/−) with arthritic human TNF-transgenic (hTNFtg) mice. Development of synovial inflammation was almost unaffected on IL-1 deficiency, but bone erosion and osteoclast formation were significantly reduced in IL-1−/−hTNFtg mice, compared with hTNFtg mice based on an intrinsic differentiation defect of IL-1-deficient monocytes. Most dramatically, however, cartilage damage was absent in IL-1−/−hTNFtg mice. Chimera studies revealed that protection of cartilage is based on the loss of IL-1 on hematopoietic, but not mesenchymal, cells, leading to decreased expression of ADAMTS-5 and MMP-3. These data show that TNF-mediated cartilage damage is completely and TNF-mediated bone damage is partially dependent on IL-1, suggesting that IL-1 is a crucial mediator for inflammatory cartilage and bone degradation.


Arthritis Research & Therapy | 2007

Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease

Rainer Zenz; Robert Eferl; Clemens Scheinecker; Kurt Redlich; Josef S Smolen; Helia B. Schonthaler; Lukas Kenner; Erwin Tschachler; Erwin F. Wagner

Activator protein 1 (AP-1) (Fos/Jun) is a transcriptional regulator composed of members of the Fos and Jun families of DNA binding proteins. The functions of AP-1 were initially studied in mouse development as well as in the whole organism through conventional transgenic approaches, but also by gene targeting using knockout strategies. The importance of AP-1 proteins in disease pathways including the inflammatory response became fully apparent through conditional mutagenesis in mice, in particular when employing gene inactivation in a tissue-specific and inducible fashion. Besides the well-documented roles of Fos and Jun proteins in oncogenesis, where these genes can function both as tumor promoters or tumor suppressors, AP-1 proteins are being recognized as regulators of bone and immune cells, a research area termed osteoimmunology. In the present article, we review recent data regarding the functions of AP-1 as a regulator of cytokine expression and an important modulator in inflammatory diseases such as rheumatoid arthritis, psoriasis and psoriatic arthritis. These new data provide a better molecular understanding of disease pathways and should pave the road for the discovery of new targets for therapeutic applications.


Arthritis & Rheumatism | 2011

Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice

Stephan Blüml; Michael Bonelli; Birgit Niederreiter; Antonia Puchner; Georg Mayr; Silvia Hayer; Marije I. Koenders; Wim B. van den Berg; Josef S Smolen; Kurt Redlich

OBJECTIVE MicroRNAs (miRNA) are a new class of regulatory elements. Altered expression of miRNA has been demonstrated in the inflamed joints of patients with rheumatoid arthritis (RA). The aim of this study was to examine the role of miRNA in the pathogenesis of autoimmune arthritis, using 2 murine models. METHODS Collagen-induced arthritis (CIA) and K/BxN serum-transfer arthritis were induced in wild-type (WT) and miR-155-deficient (miR-155(-/-) ) mice. The severity of arthritis was determined clinically and histologically. Anticollagen antibodies and cytokines were measured by enzyme-linked immunosorbent assay. The cellular composition of the draining lymph nodes after induction of CIA was measured by flow cytometry. RESULTS The miR-155(-/-) mice did not develop CIA. Deficiency in miR-155 prevented the generation of pathogenic autoreactive B and T cells, since anticollagen antibodies and the expression levels of antigen-specific T cells were strongly reduced in miR-155(-/-) mice. Moreover, Th17 polarization of miR-155(-/-) mouse T cells was impaired, as shown by a significant decrease in the levels of interleukin-17 (IL-17) and IL-22. In the K/BxN serum-transfer arthritis model, which only depends on innate effector mechanisms, miR-155(-/-) mice showed significantly reduced local bone destruction, attributed to reduced generation of osteoclasts, although the severity of joint inflammation was similar to that in WT mice. CONCLUSION These results demonstrate that miR-155 is essentially involved in the adaptive and innate immune reactions leading to autoimmune arthritis, and therefore miR-155 might provide a novel target for the treatment of patients with RA.


Nature Reviews Rheumatology | 2005

Mechanisms of Disease: the link between RANKL and arthritic bone disease.

Georg Schett; Silvia Hayer; Jochen Zwerina; Kurt Redlich; Josef S Smolen

Chronic inflammation and bone loss are closely linked pathophysiologic events. The most typical example of inflammatory bone loss is seen in patients with rheumatoid arthritis who develop systemic osteopenia as well as local breakdown of bone in the direct vicinity of inflamed joints. Understanding the mechanisms of arthritic bone degradation is crucial for designing therapies that can specifically protect joints from structural damage. Since osteoclast differentiation and activity are key events in arthritic bone damage, the signals that trigger osteoclastogenesis are potential therapeutic targets. Receptor activator of nuclear factor-κB (RANK) is activated by its ligand, RANKL, an essential molecule for osteoclast development: in the absence of RANKL or RANK, osteoclast differentiation from monocyte precursors does not occur. RANKL is expressed on T cells and fibroblasts within the synovial inflammatory tissue of patients with RA and its expression is regulated by proinflammatory cytokines. In animal models of arthritis, blockade of RANKL–RANK interactions, or a genetic absence of RANKL or RANK, protects against joint damage despite the presence of joint inflammation. Therefore, inhibition of RANKL is regarded as a promising future strategy for inhibiting inflammatory bone loss in patients with chronic inflammatory arthritis.


Annals of the New York Academy of Sciences | 2005

Pathogenesis of Rheumatoid Arthritis: Targeting Cytokines

Jochen Zwerina; Kurt Redlich; Georg Schett; Josef S Smolen

Abstract: Although considerable progress has been made by adequate treatment with traditional disease‐modifying antirheumatic drugs (DMARDs), therapy of rheumatoid arthritis (RA) still remains difficult. The discovery of the importance of cytokines such as tumor necrosis factor (TNF), interleukin‐1 (IL‐1), interleukin‐6 (IL‐6), and interleukin‐15 (IL‐15), which are also stimulated by consequences of autoimmune responses, has led to the development of anticytokine therapies (“biologicals”). Blocking TNF or also, to some extent, IL‐1 has proved beneficial in DMARD‐resistant RA patients in multiple clinical trials. Along with clinical improvement, TNF blockade has been shown to halt radiographic disease progression, a major risk factor for disability. Recently, clinical trials have shown a significant therapeutic benefit of biological inhibitors of IL‐6, and also of IL‐15, with an efficacy comparable to that of TNF blockers. All these agents are particularly efficacious when combined with methotrexate. Although clinical remission is difficult to achieve even with anticytokine treatment, these drugs offer the potential to decrease disease activity and improve quality of life in a majority of RA patients, and it is conceivable that combinations of biological therapies may pave the path to even better success, which ultimately is remission or even cure.

Collaboration


Dive into the Kurt Redlich's collaboration.

Top Co-Authors

Avatar

Josef S Smolen

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Schett

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Birgit Niederreiter

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Günter Steiner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Stephan Blüml

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Antonia Puchner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Victoria Saferding

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Jochen Zwerina

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Georg Schett

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge