Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgit Niederreiter is active.

Publication


Featured researches published by Birgit Niederreiter.


Arthritis & Rheumatism | 2011

Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice

Stephan Blüml; Michael Bonelli; Birgit Niederreiter; Antonia Puchner; Georg Mayr; Silvia Hayer; Marije I. Koenders; Wim B. van den Berg; Josef S Smolen; Kurt Redlich

OBJECTIVE MicroRNAs (miRNA) are a new class of regulatory elements. Altered expression of miRNA has been demonstrated in the inflamed joints of patients with rheumatoid arthritis (RA). The aim of this study was to examine the role of miRNA in the pathogenesis of autoimmune arthritis, using 2 murine models. METHODS Collagen-induced arthritis (CIA) and K/BxN serum-transfer arthritis were induced in wild-type (WT) and miR-155-deficient (miR-155(-/-) ) mice. The severity of arthritis was determined clinically and histologically. Anticollagen antibodies and cytokines were measured by enzyme-linked immunosorbent assay. The cellular composition of the draining lymph nodes after induction of CIA was measured by flow cytometry. RESULTS The miR-155(-/-) mice did not develop CIA. Deficiency in miR-155 prevented the generation of pathogenic autoreactive B and T cells, since anticollagen antibodies and the expression levels of antigen-specific T cells were strongly reduced in miR-155(-/-) mice. Moreover, Th17 polarization of miR-155(-/-) mouse T cells was impaired, as shown by a significant decrease in the levels of interleukin-17 (IL-17) and IL-22. In the K/BxN serum-transfer arthritis model, which only depends on innate effector mechanisms, miR-155(-/-) mice showed significantly reduced local bone destruction, attributed to reduced generation of osteoclasts, although the severity of joint inflammation was similar to that in WT mice. CONCLUSION These results demonstrate that miR-155 is essentially involved in the adaptive and innate immune reactions leading to autoimmune arthritis, and therefore miR-155 might provide a novel target for the treatment of patients with RA.


Nature Medicine | 2009

Estrogen-dependent and C-C chemokine receptor-2-dependent pathways determine osteoclast behavior in osteoporosis

Nikolaus B. Binder; Birgit Niederreiter; Oskar Hoffmann; Richard Stange; Thomas Pap; Thomas M. Stulnig; Matthias Mack; Reinhold G. Erben; Josef S Smolen; Kurt Redlich

Understanding the mechanisms of osteoclastogenesis is crucial for developing new drugs to treat diseases associated with bone loss, such as osteoporosis. Here we report that the C-C chemokine receptor-2 (CCR2) is crucially involved in balancing bone mass. CCR2-knockout mice have high bone mass owing to a decrease in number, size and function of osteoclasts. In normal mice, activation of CCR2 in osteoclast progenitor cells results in both nuclear factor-κB (NF-κB) and extracellular signal–related kinase 1 and 2 (ERK1/2) signaling but not that of p38 mitogen-activated protein kinase or c-Jun N-terminal kinase. The induction of NF-κB and ERK1/2 signaling in turn leads to increased surface expression of receptor activator of NF-κB (RANK, encoded by Tnfrsf11a), making the progenitor cells more susceptible to RANK ligand-induced osteoclastogenesis. In ovariectomized mice, a model of postmenopausal osteoporosis, CCR2 is upregulated on wild-type preosteoclasts, thus increasing the surface expression of RANK on these cells and their osteoclastogenic potential, whereas CCR2-knockout mice are resistant to ovariectomy-induced bone loss. These data reveal a previously undescribed pathway by which RANK, osteoclasts and bone homeostasis are regulated in health and disease.


Arthritis & Rheumatism | 2010

Mammalian Target of Rapamycin Signaling Is Crucial for Joint Destruction in Experimental Arthritis and Is Activated in Osteoclasts From Patients With Rheumatoid Arthritis

Daniel Cejka; Silvia Hayer; Birgit Niederreiter; Wolfgang Sieghart; Thorsten Fuereder; Jochen Zwerina; Georg Schett

OBJECTIVE Activation of the mammalian target of rapamycin (mTOR) pathway is important for immune cell activation and bone metabolism. To date, the contribution of mTOR signaling to joint inflammation and structural bone and cartilage damage is unknown. The aim of this study was to investigate the potential of inhibiting mTOR as a treatment of inflammatory arthritis. METHODS Human tumor necrosis factor-transgenic mice in which inflammatory arthritis was developing were treated with 2 different mTOR inhibitors, sirolimus or everolimus. The effects of treatment on clinical disease activity, inflammation, and localized joint and cartilage destruction were studied. In addition, the effects of mTOR inhibition on osteoclast survival and expression of key molecules of osteoclast function were analyzed in vitro. Moreover, synovial tissue from patients with rheumatoid arthritis (RA) was assessed for activation of the mTOR pathway. RESULTS Inhibition of mTOR by sirolimus or everolimus reduced synovial osteoclast formation and protected against local bone erosions and cartilage loss. Clinical signs of arthritis improved after mTOR inhibition, and histologic evaluation showed a decrease in synovitis. In vitro, mTOR inhibition down-regulated the expression of digestive enzymes and led to osteoclast apoptosis. Moreover, mTOR signaling was shown to be active in the synovial membrane of patients with RA, particularly in synovial osteoclasts. CONCLUSION Signaling through mTOR is an important link between synovitis and structural damage in inflammatory arthritis. Current pharmacologic inhibitors of mTOR could be effective in protecting joints against structural damage.


Arthritis & Rheumatism | 2009

Cadherin 11 promotes invasive behavior of fibroblast-like synoviocytes.

Hans P. Kiener; Birgit Niederreiter; David M. Lee; Esther Jimenez-Boj; Josef S Smolen; Michael B. Brenner

OBJECTIVE To define the expression pattern of cadherin 11 in the destructive pannus tissue of patients with rheumatoid arthritis, and to determine whether cadherin 11 expression in fibroblast-like synoviocytes controls their invasive capacity. METHODS Cadherin 11 expression in rheumatoid synovial tissue was evaluated using immunohistochemistry. To examine the role of cadherin 11 in regulating the invasive behavior of fibroblast-like synoviocytes, we generated L cell clones expressing wild-type cadherin 11, mutant cadherin 11, and empty vector-transfected controls. The invasive capacity of L cell transfectants and cultured fibroblast-like synoviocytes treated with a blocking cadherin 11-Fc fusion protein or control immunoglobulin was determined in Matrigel invasion assays. RESULTS Immunohistochemical analysis revealed that cadherin 11 is abundantly expressed in cells at the cartilage-pannus junction in rheumatoid synovitis. Assays to determine invasion demonstrated a 2-fold increased invasive capacity of cadherin 11-transfected L cells compared with L cells transfected with E-cadherin or control vector. The invasive behavior of L cells stably transfected with a cadherin 11 construct that lacked the juxtamembrane cytoplasmic domain was diminished to the level of vector control L cells. Furthermore, treatment with the cadherin 11-Fc fusion protein diminished the invasive capacity of fibroblast-like synoviocytes. CONCLUSION The results of these in vitro studies implicate a role for cadherin 11 in promoting cell invasion and contribute insight into the invasive nature of fibroblast-like synoviocytes in chronic synovitis and rheumatoid arthritis.


Arthritis & Rheumatism | 2010

Antiinflammatory effects of tumor necrosis factor on hematopoietic cells in a murine model of erosive arthritis

Stephan Blüml; Nikolaus B. Binder; Birgit Niederreiter; Karin Polzer; Silvia Hayer; Stefanie Tauber; Georg Schett; Clemens Scheinecker; George Kollias; Edgar Selzer; Martin Bilban; Josef S Smolen; Giulio Superti-Furga; Kurt Redlich

OBJECTIVE To investigate the mechanisms leading to the influx of inflammatory hematopoietic cells into the synovial membrane and the role of tumor necrosis factor receptor I (TNFRI) and TNFRII in this process in an animal model of rheumatoid arthritis (RA). METHODS We performed bone marrow transplantations in human TNF-transgenic mice using hematopoietic cells from wild-type, TNFRI(-/-), TNFRII(-/-), and TNFRI/II(-/-) mice as donors and assessed the severity of arthritis histologically. Generation of osteoclasts from the different genotypes was analyzed in vitro and in vivo. Apoptosis was analyzed using annexin V staining as well as TUNEL assays. RESULTS Despite lacking responsiveness to TNF in their hematopoietic compartment, mice not only developed full-blown erosive arthritis but even showed increased joint destruction when compared with mice with a TNF-responsive hematopoietic compartment. We demonstrated different roles of the 2 different TNFRs in the regulation of these processes. The absence of TNFRI on hematopoietic cells did not affect joint inflammation but markedly attenuated erosive bone destruction via reduced synovial accumulation of osteoclast precursors. In contrast, the absence of TNFRII on hematopoietic cells increased joint inflammation as well as erosive bone destruction via the regulation of osteoclast precursor apoptosis. CONCLUSION Our findings indicate that selective blockade of TNFRI, leaving the antiinflammatory effects of TNFRII unaltered instead of unselectively blocking TNF, might be advantageous in patients with RA.


Annals of the Rheumatic Diseases | 2012

Early structural changes in cartilage and bone are required for the attachment and invasion of inflamed synovial tissue during destructive inflammatory arthritis

Adelheid Korb-Pap; Athanasios Stratis; Katja Mühlenberg; Birgit Niederreiter; Silvia Hayer; Frank Echtermeyer; Richard Stange; Jochen Zwerina; Thomas Pap; Hermann Pavenstädt; Georg Schett; Josef S Smolen; Kurt Redlich

Objective To elucidate the mechanisms involved in cartilage damage in an experimental model of rheumatoid arthritis (RA) by specifically addressing the time course of extracellular matrix degradation and the contribution of cell–matrix interactions for initiation and perpetuation of this process. Methods The human tumour necrosis factor (TNF) transgenic (hTNFtg) mouse model of RA was used to analyse the time course of pannus attachment to the cartilage and cartilage destruction, respectively, and crossed hTNFtg mice with interleukin (IL)-1−/− animals were used to investigate the role of IL-1 on these TNF-induced mechanisms in vivo. In addition, an in vitro attachment assay using synovial fibroblasts (SFs) from hTNFtg mice and freshly isolated articular cartilage was used to determine the role of proteoglycan loss in attachment of SFs and the role of the transmembrane heparan sulfate proteoglycan syndecan-4. Results In vivo analyses of hTNFtg mice showed that proteoglycan loss induced by IL-1 precedes and constitutes an important prerequisite for these processes as, in hTNFtg mice, IL-1 deficiency protected from the loss of cartilage proteoglycans and almost completely prevented the attachment and subsequent invasion of inflamed synovial tissue into cartilage. In vitro studies confirmed that loss of cartilage proteoglycans is required for attachment of SFs and that syndecan-4 is prominently involved in SF attachment and activation. Conclusions The results of this study suggest that the loss of cartilage proteoglycans is an early event in the course of destructive arthritis that facilitates the attachment of the inflamed synovial membrane and also initiates matrix degradation and inflammation through cell–matrix interactions.


Arthritis & Rheumatism | 2010

Synovial fibroblasts self‐direct multicellular lining architecture and synthetic function in three‐dimensional organ culture

Hans P. Kiener; Gerald F. Watts; Yajun Cui; John Wright; Thomas S. Thornhill; Markus Sköld; Samuel M. Behar; Birgit Niederreiter; Jun Lu; Manuela Cernadas; Anthony J. Coyle; Gary P. Sims; Josef S Smolen; Matthew L. Warman; Michael B. Brenner; David M. Lee

OBJECTIVE To define the intrinsic capacity of fibroblast-like synoviocytes (FLS) to establish a 3-dimensional (3-D) complex synovial lining architecture characterized by the multicellular organization of the compacted synovial lining and the elaboration of synovial fluid constituents. METHODS FLS were cultured in spherical extracellular matrix (ECM) micromasses for 3 weeks. The FLS micromass architecture was assessed histologically and compared with that of dermal fibroblast controls. Lubricin synthesis was measured via immunodetection. Basement membrane matrix and reticular fiber stains were performed to examine ECM organization. Primary human and mouse monocytes were prepared and cocultured with FLS in micromass to investigate cocompaction in the lining architecture. Cytokine stimuli were applied to determine the capacity for inflammatory architecture rearrangement. RESULTS FLS, but not dermal fibroblasts, spontaneously formed a compacted lining architecture over 3 weeks in the 3-D ECM micromass organ cultures. These lining cells produced lubricin. FLS rearranged their surrounding ECM into a complex architecture resembling the synovial lining and supported the survival and cocompaction of monocyte/macrophages in the neo-lining structure. Furthermore, when stimulated by cytokines, FLS lining structures displayed features of the hyperplastic rheumatoid arthritis synovial lining. CONCLUSION This 3-D micromass organ culture method demonstrates that many of the phenotypic characteristics of the normal and the hyperplastic synovial lining in vivo are intrinsic functions of FLS. Moreover, FLS promote survival and cocompaction of primary monocytes in a manner remarkably similar to that of synovial lining macrophages. These findings provide new insight into inherent functions of the FLS lineage and establish a powerful in vitro method for further investigation of this lineage.


Arthritis & Rheumatism | 2013

Tumor necrosis factor-inhibiting therapy preferentially targets bone destruction but not synovial inflammation in a tumor necrosis factor-driven model of rheumatoid arthritis.

Nikolaus B. Binder; Antonia Puchner; Birgit Niederreiter; Silvia Hayer; H Leiss; Stephan Blüml; Roman Kreindl; Josef S Smolen; Kurt Redlich

OBJECTIVE To investigate how tumor necrosis factor (TNF)-inhibiting therapy affects bone destruction and inflammation in a TNF-driven mouse model of rheumatoid arthritis. METHODS In order to evaluate the influence of TNF on osteoclastogenesis in vitro, different concentrations of TNF were added to spleen cell-derived monocytes in the absence or presence of different concentrations of RANKL. In addition, the effects of TNF inhibition on osteoclast precursors as well as local bone destruction in vivo were assessed by treating TNF-transgenic mice with different doses of adalimumab. RESULTS TNF stimulated osteoclastogenesis mainly by increasing the number of osteoclast precursor cells in vitro. This TNF effect was independent of the presence of RANKL. In the hTNF-transgenic mouse model of destructive arthritis, low-dose TNF-inhibiting therapy with adalimumab had no effect on synovial inflammation but significantly inhibited local bone destruction and the generation of osteoclasts. This inhibition was accompanied by a reduction in the number of c-Fms-positive osteoclast precursor cells in the bone marrow and a reduction of the osteoclast precursor pools in the blood and inflamed synovial membrane of hTNF-transgenic mice. CONCLUSION Low-dose TNF-inhibiting therapy significantly reduces bone erosions by reducing the number of circulating and joint-invading osteoclast precursors. This effect is uncoupled from its antiinflammatory action.


Arthritis & Rheumatism | 2013

Abatacept (CTLA‐4IG) treatment reduces the migratory capacity of monocytes in patients with rheumatoid arthritis

Michael Bonelli; E. Ferner; Lisa Göschl; Stephan Blüml; Anastasiya Hladik; Thomas Karonitsch; Hans P. Kiener; Ruth A. Byrne; Birgit Niederreiter; Carl-Walter Steiner; Eva Rath; Michael Bergmann; Josef S Smolen; Clemens Scheinecker

OBJECTIVE The binding of abatacept (CTLA-4Ig) to the B7 ligands CD80 and CD86 prevents the engagement of CD28 on T cells and thereby prevents effector T cell activation. In addition, a direct effect of CTLA-4Ig on antigen-presenting cells (APCs) could contribute to the therapeutic effect. To further elucidate the mechanism of CTLA-4Ig, we performed phenotype and functional analyses of APCs in patients with rheumatoid arthritis (RA) before and after the initiation of CTLA-4Ig therapy. METHODS Peripheral blood mononuclear cells were analyzed before and at 2 and 4 weeks after the initiation of CTLA-4Ig therapy. Proportions of APCs were determined by flow cytometry. CD14+ monocytes were further analyzed for the expression of costimulatory and adhesion molecules and for their transendothelial migratory capacity in vitro. In addition, CD14+ monocytes from healthy controls were analyzed for their migratory and spreading capacity. RESULTS Proportions and absolute numbers of monocytes were significantly increased in RA patients treated with CTLA-4Ig. The expression of several adhesion molecules was significantly diminished. In addition, monocytes displayed a significant reduction in their endothelial adhesion and transendothelial migratory capacity upon treatment with CTLA-4Ig. Likewise, isolated monocytes from healthy controls revealed a significant reduction in their migratory and spreading activity after preincubation with CTLA-4Ig or anti-CD80 and anti-CD86 antibodies. CONCLUSION We describe direct effects of CTLA-4Ig therapy on phenotype and functional characteristics of monocytes in RA patients that might interfere with the migration of monocytes to the synovial tissue. This additional mechanism of CTLA-4Ig might contribute to the beneficial effects of CTLA-4Ig treatment in RA patients.


Annals of the Rheumatic Diseases | 2013

The cathelicidins LL-37 and rCRAMP are associated with pathogenic events of arthritis in humans and rats

Markus H Hoffmann; Heiko Bruns; Liselotte Bäckdahl; Petra Neregård; Birgit Niederreiter; Martin Herrmann; Anca Irinel Catrina; Birgitta Agerberth; Rikard Holmdahl

Background In rheumatoid arthritis (RA), neutrophil granulocytes fuel inflammation and damage tissue in the joint by releasing cytotoxic agents, antimicrobial peptides, proteases and other inflammatory mediators. The human cathelicidin LL-37 has recently been implicated in the development of systemic lupus erythematosus and psoriasis. Objective To elucidate if antimicrobial peptides (AMPs) contribute to the pathogenesis of arthritis. Methods Expression of LL-37 was determined in synovial membranes from patients with arthritis and control subjects. Expression of the rat cathelicidin rCRAMP and defensins was characterised in joints, blood and secondary lymphoid organs during pristane-induced arthritis (PIA) in rats and in a transfer model of PIA induced by CD4 T cells. Serum samples of rats with arthritis were tested for IgG and IgM autoantibodies against rCRAMP by immunoblot and for interferon (IFNα) by ELISA. Results Cathelicidins are strongly upregulated in RA synovial membranes and in joints from rats with arthritis as compared with healthy joints. Expression was most prominent in neutrophil granulocytes and macrophages/osteoclasts. Cathelicidin expression is also upregulated in the blood and spleen of pristane-injected rats, with strongest expression detected in activated CD62L− cells coexpressing granulocyte and monocyte markers. Pristane injection caused accumulation of low-density granulocytes in the blood. After pristane injection, the increased expression of rCRAMP coincided with higher levels of cell death, raised levels of interferon (IFN)α and development of autoantibodies. Conclusions Our results show strong upregulation of cathelicidins and β-defensins coinciding with pathological events of arthritis. Higher expression and release of AMPs might contribute to development and/or maintenance of disease by systemic or local mechanisms.

Collaboration


Dive into the Birgit Niederreiter's collaboration.

Top Co-Authors

Avatar

Josef S Smolen

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Kurt Redlich

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Silvia Hayer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Stephan Blüml

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Antonia Puchner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Hans P. Kiener

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Michael Bonelli

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Günter Steiner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Thomas Karonitsch

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Gernot Schabbauer

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge