Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kusum J. Naithani is active.

Publication


Featured researches published by Kusum J. Naithani.


PLOS ONE | 2013

Spatial Distribution of Tree Species Governs the Spatio-Temporal Interaction of Leaf Area Index and Soil Moisture across a Forested Landscape

Kusum J. Naithani; Doug Baldwin; Katie P. Gaines; Henry Lin; David M. Eissenstat

Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (θ) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and θ. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in θ. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests.


PLOS ONE | 2012

Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance

Erica A. H. Smithwick; Kusum J. Naithani; Teri C. Balser; William H. Romme; Monica G. Turner

Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R2<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21st Century.


Frontiers in Physiology | 2016

Population Dynamics and Flight Phenology Model of Codling Moth Differ between Commercial and Abandoned Apple Orchard Ecosystems.

Neelendra K. Joshi; Edwin G. Rajotte; Kusum J. Naithani; Greg Krawczyk; Larry A. Hull

Apple orchard management practices may affect development and phenology of arthropod pests, such as the codling moth (CM), Cydia pomonella (L.) (Lepidoptera: Tortricidae), which is a serious internal fruit-feeding pest of apples worldwide. Estimating population dynamics and accurately predicting the timing of CM development and phenology events (for instance, adult flight, and egg-hatch) allows growers to understand and control local populations of CM. Studies were conducted to compare the CM flight phenology in commercial and abandoned apple orchard ecosystems using a logistic function model based on degree-days accumulation. The flight models for these orchards were derived from the cumulative percent moth capture using two types of commercially available CM lure baited traps. Models from both types of orchards were also compared to another model known as PETE (prediction extension timing estimator) that was developed in 1970s to predict life cycle events for many fruit pests including CM across different fruit growing regions of the United States. We found that the flight phenology of CM was significantly different in commercial and abandoned orchards. CM male flight patterns for first and second generations as predicted by the constrained and unconstrained PCM (Pennsylvania Codling Moth) models in commercial and abandoned orchards were different than the flight patterns predicted by the currently used CM model (i.e., PETE model). In commercial orchards, during the first and second generations, the PCM unconstrained model predicted delays in moth emergence compared to current model. In addition, the flight patterns of females were different between commercial and abandoned orchards. Such differences in CM flight phenology between commercial and abandoned orchard ecosystems suggest potential impact of orchard environment and crop management practices on CM biology.


Frontiers in Plant Science | 2014

Abiotic and biotic controls on local spatial distribution and performance of Boechera stricta

Kusum J. Naithani; Brent E. Ewers; Jonathan D. Adelman; David H. Siemens

This study investigates the relative influence of biotic and abiotic factors on community dynamics using an integrated approach and highlights the influence of space on genotypic and phenotypic traits in plant community structure. We examined the relative influence of topography, environment, spatial distance, and intra- and interspecific interactions on spatial distribution and performance of Boechera stricta (rockcress), a close perennial relative of model plant Arabidopsis. First, using Bayesian kriging, we mapped the topography and environmental gradients and explored the spatial distribution of naturally occurring rockcress plants and two neighbors, Taraxacum officinale (dandelion) and Solidago missouriensis (goldenrod) found in close proximity within a typical diverse meadow community across topographic and environmental gradients. We then evaluated direct and indirect relationships among variables using Mantel path analysis and developed a network displaying abiotic and biotic interactions in this community. We found significant spatial autocorrelation among rockcress individuals, either because of common microhabitats as displayed by high density of individuals at lower elevation and high soil moisture area, or limited dispersal as shown by significant spatial autocorrelation of naturally occurring inbred lines, or a combination of both. Goldenrod and dandelion density around rockcress does not show any direct relationship with rockcress fecundity, possibly due to spatial segregation of resources. However, dandelion density around rockcress shows an indirect negative influence on rockcress fecundity via herbivory, indicating interspecific competition. Overall, we suggest that common microhabitat preference and limited dispersal are the main drivers for spatial distribution. However, intra-specific interactions and insect herbivory are the main drivers of rockcress performance in the meadow community.


Rangeland Ecology & Management | 2018

Biophysical Factors and Canopy Coupling Control Ecosystem Water and Carbon Fluxes of Semiarid Sagebrush Ecosystems

David E. Reed; Brent E. Ewers; Elise Pendall; Kusum J. Naithani; Hyojung Kwon; Robert D. Kelly

ABSTRACT The sagebrush-steppe ecosystem covers much of western North America, and its productivity is sensitive to warming and increasingly variable precipitation. Interannual variation in precipitation has been shown to be the most significant factor controlling biogeochemical cycling while both soil and atmospheric drought are dominant factors of ecosystem fluxes. We show that plant canopies can also act to limit water losses through stomatal and aerodynamic control. We use 4 data-yr from 2 sites (2 069 and 2 469 m above sea level elevation, respectively) to evaluate control of carbon and water fluxes and to calculate the degree to which the ecosystem canopy and atmosphere are decoupled. Environmental conditions were similar between the two sites, although the lower elevation site was slightly warmer (1.8°C higher temperature) and drier (0.2 kPa higher vapor pressure deficit). Ecosystem responses of net ecosystem exchange (NEE) and evapotranspiration (ET) to environmental drivers were similar between sites and years, with the wet site-yr 2009 having the largest ET and NEE fluxes. Canopy leaf area led to divergent behavior of the canopy-atmosphere decoupling parameter under high (> 11% by volume) soil moisture conditions. During low (< 11%) soil moisture periods, both sites had tight ecosystem stomatal control on ET with little NEE activity. This study highlights how semiarid ecosystems can alter their canopy leaf area in order to control how decoupled semi-arid canopies are to the atmosphere, potentially moderating impacts of climate change.


Ecological Applications | 2018

Fine-scale spatial homogenization of microbial habitats: a multivariate index of headwater wetland complex condition

Jessica B. Moon; Denice H. Wardrop; Erica A. H. Smithwick; Kusum J. Naithani

With growing public awareness that wetlands are important to society, there are intensifying efforts to understand the ecological condition of those wetlands that remain, and to develop indicators of wetland condition. Indicators based on soils are not well developed and are absent in some current assessment protocols; these could be advantageous, particularly for soils, which are complex habitats for plants, invertebrates, and microbial communities. In this study, we examine whether multivariate soil indicators, correlated with microbial biomass and community composition, can be used to distinguish reference standard (i.e., high condition) headwater wetland complexes from impacted headwater wetland complexes in central Pennsylvania, USA. Our reference standard sites existed in forested landscapes, while our impacted sites were situated in multi-use landscapes and were affected by a range of land-use legacies in the 1900s. We found that current assessment protocols are likely underrepresenting sampling needs to accurately represent site mean soil properties. On average, more samples were required to represent soil property means in reference standard sites compared to impacted sites. Reference standard and impacted sites also had noticeably different types of microbial habitats for the two multivariate soil indices assessed, and impacted sites were more homogenized in terms of the fine-scale (i.e., 1 and 5 m) spatial variability of these indices. Our study shows promise for the use of multivariate soil indices as indicators of wetland condition and provides insights into the sample sizes and scales at which soil sampling should occur during assessments. Future work is needed to test the generalizability of these findings across wetland types and ecoregions and establish definitive links between structural changes in microbial habitats and changes in wetland soil functioning.


Ecohydrology | 2018

Model-data fusion approach to quantify evapotranspiration and net ecosystem exchange across the sagebrush ecosystem at different temporal resolutions: Model - Data fusion approach to quantify water and carbon fluxes

Bhaskar Mitra; D. Scott Mackay; Elise Pendall; Brent E. Ewers; Hyojung Kwon; Meagan B. Cleary; Kusum J. Naithani

Department of Geography, State University of New York at Buffalo, Buffalo, NY 14261, USA Department of Biological Science, University of Arkansas, Fayetteville, AR 72701, USA Department of Botany, University of Wyoming, Laramie, WY 82071, USA Program in Ecology, University of Wyoming, Laramie, WY 82071, USA Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW 1797, Australia Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA


Ecosphere | 2017

Model application niche analysis: assessing the transferability and generalizability of ecological models

Jessica Moon; Theodore H. DeWitt; Melissa N. Errend; Randall J. F. Bruins; Mary E. Kentula; Sarah J. Chamberlain; M. Siobhan Fennessy; Kusum J. Naithani

The use of models by ecologists and environmental managers, to inform environmental management and decision-making, has grown exponentially in the past 50 years. Due to logistical, economical, and theoretical benefits, model users frequently transfer preexisting models to new sites where data are scarce. Modelers have made significant progress in understanding how to improve model generalizability during model development. However, models are always imperfect representations of systems and are constrained by the contextual frameworks used during their development. Thus, model users need better ways to evaluate the possibility of unintentional misapplication when transferring models to new sites. We propose a method of describing a models application niche for use during the model selection process. Using this method, model users synthesize information from databases, past studies, and/or past model transfers to create model performance curves and heat maps. We demonstrated this method using an empirical model developed to predict the ecological condition of plant communities in riverine wetlands of the Appalachian Highland physiographic region, U.S.A. We assessed this models transferability and generalizability across (1) riverine wetlands in the contiguous U.S.A., (2) wetland types in the Appalachian Highland physiographic region, and (3) wetland types in the contiguous U.S.A. With this methodology and a discussion of its critical steps, we set the stage for further inquiries into the development of consistent and transparent practices for model selection when transferring a model.


PeerJ | 2016

Grassland productivity in response to nutrient additions and herbivory is scale-dependent

Erica A. H. Smithwick; Douglas C. Baldwin; Kusum J. Naithani

Vegetation response to nutrient addition can vary across space, yet studies that explicitly incorporate spatial pattern into experimental approaches are rare. To explore whether there are unique spatial scales (grains) at which grass response to nutrients and herbivory is best expressed, we imposed a large (∼3.75 ha) experiment in a South African coastal grassland ecosystem. In two of six 60 × 60 m grassland plots, we imposed a scaled sampling design in which fertilizer was added in replicated sub-plots (1 × 1 m, 2 × 2 m, and 4 × 4 m). The remaining plots either received no additions or were fertilized evenly across the entire area. Three of the six plots were fenced to exclude herbivory. We calculated empirical semivariograms for all plots one year following nutrient additions to determine whether the scale of grass response (biomass and nutrient concentrations) corresponded to the scale of the sub-plot additions and compared these results to reference plots (unfertilized or unscaled) and to plots with and without herbivory. We compared empirical semivariogram parameters to parameters from semivariograms derived from a set of simulated landscapes (neutral models). Empirical semivariograms showed spatial structure in plots that received multi-scaled nutrient additions, particularly at the 2 × 2 m grain. The level of biomass response was predicted by foliar P concentration and, to a lesser extent, N, with the treatment effect of herbivory having a minimal influence. Neutral models confirmed the length scale of the biomass response and indicated few differences due to herbivory. Overall, we conclude that interpretation of nutrient limitation in grasslands is dependent on the grain used to measure grass response and that herbivory had a secondary effect.


Journal of Hydrology | 2012

Sap flux-scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem

Kusum J. Naithani; Brent E. Ewers; Elise Pendall

Collaboration


Dive into the Kusum J. Naithani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erica A. H. Smithwick

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Doug Baldwin

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Henry Lin

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Eissenstat

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Denice H. Wardrop

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge