Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kwan Wee Tan is active.

Publication


Featured researches published by Kwan Wee Tan.


ACS Nano | 2014

Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells

Kwan Wee Tan; David T. Moore; Michael Saliba; Hiroaki Sai; Lara A. Estroff; Tobias Hanrath; Henry J. Snaith; Ulrich Wiesner

Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.


Journal of the American Chemical Society | 2015

Crystallization Kinetics of Organic–Inorganic Trihalide Perovskites and the Role of the Lead Anion in Crystal Growth

David T. Moore; Hiroaki Sai; Kwan Wee Tan; Detlef-M. Smilgies; Wei Zhang; Henry J. Snaith; Ulrich Wiesner; Lara A. Estroff

Methylammonium lead halide perovskite solar cells continue to excite the research community due to their rapidly increasing performance which, in large part, is due to improvements in film morphology. The next step in this progression is control of the crystal morphology which requires a better fundamental understanding of the crystal growth. In this study we use in situ X-ray scattering data to study isothermal transformations of perovskite films derived from chloride, iodide, nitrate, and acetate lead salts. Using established models we determine the activation energy for crystallization and find that it changes as a function of the lead salt. Further analysis enabled determination of the precursor composition and showed that the primary step in perovskite formation is removal of excess organic salt from the precursor. This understanding suggests that careful choice of the lead salt will aid in controlling crystal growth, leading to superior films and better performing solar cells.


Science | 2013

Hierarchical Porous Polymer Scaffolds from Block Copolymers

Hiroaki Sai; Kwan Wee Tan; Kahyun Hur; Emily Asenath-Smith; Robert Hovden; Yi Jiang; Mark L. Riccio; David A. Muller; Veit Elser; Lara A. Estroff; Sol M. Gruner; Ulrich Wiesner

A Complicated Scaffold, Simply Materials with tailored pore structures can be useful as catalysis supports and for lightweight materials. When preparing medical scaffolds, restrictive preparation conditions have to be met, which can prohibit multistep preparation procedures. Sai et al. (p. 530) describe a method for making porous polymers containing both relatively large (several microns) interconnecting pores and a second population of ∼ tens of nanometer pores. The process exploits spinodal decomposition of a block copolymer blended with small-molecule additives and requires a simple washing step with water, methanol, or ethanol. Spinodal decomposition of block copolymers and oligomeric additives produces three-dimensional hierarchical porous polymers. Hierarchical porous polymer materials are of increasing importance because of their potential application in catalysis, separation technology, or bioengineering. Examples for their synthesis exist, but there is a need for a facile yet versatile conceptual approach to such hierarchical scaffolds and quantitative characterization of their nonperiodic pore systems. Here, we introduce a synthesis method combining well-established concepts of macroscale spinodal decomposition and nanoscale block copolymer self-assembly with porosity formation on both length scales via rinsing with protic solvents. We used scanning electron microscopy, small-angle x-ray scattering, transmission electron tomography, and nanoscale x-ray computed tomography for quantitative pore-structure characterization. The method was demonstrated for AB- and ABC-type block copolymers, and resulting materials were used as scaffolds for calcite crystal growth.


Science | 2010

Block Copolymer Self-Assembly–Directed Single-Crystal Homo- and Heteroepitaxial Nanostructures

Hitesh Arora; Phong Du; Kwan Wee Tan; Jerome K. Hyun; John Grazul; Huolin L. Xin; David A. Muller; Michael O. Thompson; Ulrich Wiesner

Polymer Templating for Metals Polymer templating has been used to fabricate a wide range of ordered materials, both due to the ability to pattern the polymers easily over a large area and their facile removal. However, the process is somewhat limited to the incorporation of materials that will flow easily into the templated areas. Arora et al. (p. 214) show that current techniques can be extended to the patterning of metals, through guided epitaxial growth. An excimer laser was used to control the flow of material into patterned templates formed from block copolymers. Patterns created on surfaces by phase-separating polymers direct the growth of crystalline inorganic nanostructures. Epitaxy is a widely used method to grow high-quality crystals. One of the key challenges in the field of inorganic solids is the development of epitaxial single-crystal nanostructures. We describe their formation from block copolymer self-assembly–directed nanoporous templates on single-crystal Si backfilled with Si or NiSi through a laser-induced transient melt process. Depending on thickness, template removal leaves either an array of nanopillars or porous nanostructures behind. For stoichiometric NiSi deposition, the template pores provide confinement, enabling heteroepitaxial growth. Irradiation through a mask provides access to hierarchically structured materials. These results on etchable and non-etchable materials suggest a general strategy for growing epitaxial single-crystal nanostructured thin films for fundamental studies and a wide variety of applications, including energy conversion and storage.


Science | 2015

Transient laser heating induced hierarchical porous structures from block copolymer–directed self-assembly

Kwan Wee Tan; Byungki Jung; Jörg G. Werner; Elizabeth R. Rhoades; Michael O. Thompson; Ulrich Wiesner

Laser patterning polymer membranes Porous materials are useful for membranes, filters, energy conversion, and catalysis. Their utility often depends on the ability to finely control both the pore sizes and their connectivity. Tan et al. prepared porous thin films of block copolymers mixed with phenol-formaldehyde resins (resols) on silicon substrates using a simple laser process. On exposure to ultraviolet light, rapid heating of the substrate causes polymerization of the resols and decomposition of the block copolymer. This method allows direct patterning of the films on a local scale, with tunable pore sizes and size distributions. Science, this issue p. 54 Laser heating drives block copolymers to self-assemble into patterned hierarchical porous structures. Development of rapid processes combining hierarchical self-assembly with mesoscopic shape control has remained a challenge. This is particularly true for high-surface-area porous materials essential for applications including separation and detection, catalysis, and energy conversion and storage. We introduce a simple and rapid laser writing method compatible with semiconductor processing technology to control three-dimensionally continuous hierarchically porous polymer network structures and shapes. Combining self-assembly of mixtures of block copolymers and resols with spatially localized transient laser heating enables pore size and pore size distribution control in all-organic and highly conducting inorganic carbon films with variable thickness. The method provides all-laser-controlled pathways to complex high-surface-area structures, including fabrication of microfluidic devices with high-surface-area channels and complex porous crystalline semiconductor nanostructures.


APL Materials | 2014

Impact of the organic halide salt on final perovskite composition for photovoltaic applications

David T. Moore; Hiroaki Sai; Kwan Wee Tan; Lara A. Estroff; Ulrich Wiesner

The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salts anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.


Journal of the American Chemical Society | 2015

Multicomponent Nanomaterials with Complex Networked Architectures from Orthogonal Degradation and Binary Metal Backfilling in ABC Triblock Terpolymers

Christina D. Cowman; Elliot Padgett; Kwan Wee Tan; Robert Hovden; Yibei Gu; Nina Andrejevic; David A. Muller; Geoffrey W. Coates; Ulrich Wiesner

Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etching and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.


Science Advances | 2016

Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors

Spencer W. Robbins; Peter A. Beaucage; Hiroaki Sai; Kwan Wee Tan; Jörg G. Werner; James P. Sethna; Francis J. DiSalvo; Sol M. Gruner; Robert Bruce van Dover; Ulrich Wiesner

Block copolymer self-assembly is used to synthesize three-dimensionally continuous gyroidal mesoporous superconductors of niobium nitride. Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly–directed sol-gel–derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (Jc) of 440 A cm−2 at 100 Oe and 2.5 K. We expect block copolymer self-assembly–directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.


Nano Letters | 2016

Stimuli-Responsive Shapeshifting Mesoporous Silica Nanoparticles

Yao Sun; Hiroaki Sai; Katherine A. Spoth; Kwan Wee Tan; Ulrike Werner-Zwanziger; Josef W. Zwanziger; Sol M. Gruner; Lena F. Kourkoutis; Ulrich Wiesner

Stimuli-responsive materials have attracted great interest in catalysis, sensing, and drug delivery applications and are typically constituted by soft components. We present a one-pot synthetic method for a type of inorganic silica-based shape change material that is responsive to water vapor exposure. After the wetting treatment, the cross-sectional shape of aminated mesoporous silica nanoparticles (MSNs) with hexagonal pore lattice changed from hexagonal to six-angle-star, accompanied by the loss of periodic mesostructural order. Nitrogen sorption measurements suggested that the wetting treatment induced a shrinkage of mesopores resulting in a broad size distribution and decreased mesopore volume. Solid-state (29)Si nuclear magnetic resonance (NMR) spectroscopy of samples after wetting treatment displayed a higher degree of silica condensation, indicating that the shape change was associated with the formation of more siloxane bonds within the silica matrix. On the basis of material characterization results, a mechanism for the observed anisotropic shrinkage is suggested based on a buckling deformation induced by capillary forces in the presence of a threshold amount of water vapor available beyond a humidity of about 50%. The work presented here may open a path toward novel stimuli-responsive materials based on inorganic components.


ACS Nano | 2011

Colloidal Self-Assembly-Directed Laser-Induced Non-Close-Packed Crystalline Silicon Nanostructures

Kwan Wee Tan; Stacey A. Saba; Hitesh Arora; Michael O. Thompson; Ulrich Wiesner

This report describes an ultrafast, large-area, and highly flexible method to construct complex two- and three-dimensional silicon nanostructures with deterministic non-close-packed symmetry. Pulsed excimer laser irradiation is used to induce a transient melt transformation of amorphous silicon filled in a colloidal self-assembly-directed inverse opal template, resulting in a nanostructured crystalline phase. The pattern transfer yields are high, and long-range order is maintained. This technique represents a potential route to obtain silicon nanostructures of various symmetries and associated unique properties for advanced applications such as energy storage and generation.

Collaboration


Dive into the Kwan Wee Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge