Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kwan-Woo Kim is active.

Publication


Featured researches published by Kwan-Woo Kim.


Bioorganic & Medicinal Chemistry Letters | 2018

Anti-neuroinflammatory effects of sesquiterpenoids isolated from Nardostachys jatamansi

Chi-Su Yoon; Kwan-Woo Kim; Sang-Chan Lee; Youn-Chul Kim; Hyuncheol Oh

Two new nardosinone-type sesquiterpenoids, namely kanshone J (1) and kanshone K (2) along with seven known terpenoids (3-9) were isolated from the rhizomes and roots of Nardostachys jatamansi DC (Valerianaceae). The structures of these compounds were determined mainly by analysis of 1D-, 2D-NMR and MS data. In addition, the absolute configuration of compound 1 was assigned by application of the modified Moshers method. In an initial assay to evaluate their anti-neuroinflammatory effects, compounds 1-5 and 9 exhibited dose-dependent inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 cells, with IC50 values ranging from 2.43 to 46.54 μM. Particularly, desoxo-narchinol A (3) and narchinol B (4) significantly inhibited LPS-induced NO overproduction in BV2 cells with IC50 values of 3.48 ± 0.47 and 2.43 ± 0.23 μM, respectively. Furthermore, compounds 3 and 4 exhibited anti-neuroinflammatory effects by inhibiting the production of pro-inflammatory mediators, including prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) proteins, and pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF)-α, in LPS-stimulated BV2 and primary microglial cells.


Neurotoxicity Research | 2018

Heme Oxygenase-1-Inducing Activity of 4-Methoxydalbergione and 4’-Hydroxy-4-methoxydalbergione from Dalbergia odorifera and Their Anti-inflammatory and Cytoprotective Effects in Murine Hippocampal and BV2 Microglial Cell Line and Primary Rat Microglial Cells

Dong-Cheol Kim; Dong-Sung Lee; Wonmin Ko; Kwan-Woo Kim; Hye Jin Kim; Chi-Su Yoon; Hyuncheol Oh; Youn-Chul Kim

Dalbergia odorifera T. Chen (Leguminosae) grows in Central and South America, Africa, Madagascar, and Southern Asia. D. odorifera possesses many useful pharmacological properties, such as antioxidative and anti-inflammatory activities in various cell types. 4-Methoxydalbergione (MTD) and 4’-hydroxy-4-methoxydalbergione (HMTD) were isolated from the EtOH extract of D. odorifera by several chromatography methods. The chemical structures were elucidated by nuclear magnetic resonance (NMR) and mass spectrum (MS). Anti-inflammatory and cytoprotective effects were examined using BV2 microglial cells and murine hippocampus. MTD and HMTD were demonstrated to induce heme oxygenase (HO)-1 protein levels through the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in BV2 microglial cells, while only MTD upregulated HO-1 in HT22 cells. MTD and HMTD induced HO-1 expression through JNK MAPK pathway in BV2 cells, whereas only MTD activated the ERK and p38 pathways in HT22 cells. MTD was also shown to activated MTD and HMTD suppressed lipopolysaccharide-stimulated nitric oxide (NO) and prostaglandin E2 production by inhibiting inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in a dose-dependent manner. Furthermore, MTD and HMTD attenuated pro-inflammatory cytokine productions. These anti-inflammatory effects were found to be mediated through the nuclear factor-kappa B (NF-κB) pathway. MTD exhibited neuroprotective effects on glutamate-induced neurotoxicity by promoting HO-1 in HT22 cells. The anti-inflammatory and cytoprotective effects of MTD and HMTD were partially reversed by an HO inhibitor tin protoporphyrin IX. In addition, MTD and HMTD inhibited pro-inflammatory cytokines and NF-κB pathway in primary rat microglia. These findings suggest that MTD and HMTD have therapeutic potential against neurodegenerative diseases accompanied by microglial activation and/or oxidative cellular injury.


Neurochemistry International | 2018

Anti-neuroinflammatory effect of 6,8,1'-tri-O-methylaverantin, a metabolite from a marine-derived fungal strain Aspergillus sp., via upregulation of heme oxygenase-1 in lipopolysaccharide-activated microglia.

Kwan-Woo Kim; Hye Jin Kim; Jae Hak Sohn; Joung Han Yim; Youn-Chul Kim; Hyuncheol Oh

&NA; In the course of searching for anti‐neuroinflammatory metabolites from marine‐derived fungi, three fungal metabolites, 6,8,1′‐tri‐O‐methylaverantin, 6,8‐di‐O‐methylaverufin, and 5‐methoxysterigmatocystin were isolated from a marine‐derived fungal strain Aspergillus sp. SF‐6796. Among these, 6,8,1′‐tri‐O‐methylaverantin induced the expression of heme oxygenase (HO)‐1 protein in BV2 microglial cells. The induction of HO‐1 protein was mediated by the activation of nuclear transcription factor erythroid‐2 related factor 2 (Nrf2), and was regulated by the p38 mitogen‐activated protein kinase and phosphatidylinositol 3‐kinase/protein kinase B signaling pathways. Furthermore, 6,8,1′‐tri‐O‐methylaverantin suppressed the overproduction of pro‐inflammatory mediators, such as nitric oxide, prostaglandin E2, inducible nitric oxide synthase, and cyclooxygenase‐2 in lipopolysaccharide (LPS)‐stimulated BV2 microglial cells. These anti‐neuroinflammatory effects were mediated through the negative regulation of the nuclear factor kappa B pathway, repressing the phosphorylation and degradation of inhibitor kappa B‐&agr;, translocation into the nucleus of p65/p50 heterodimer, and DNA‐binding activity of p65 subunit. The anti‐neuroinflammatory effect of 6,8,1′‐tri‐O‐methylaverantin was partially blocked by a selective HO‐1 inhibitor, suggesting that its anti‐neuroinflammatory effect is at least partly mediated by HO‐1 induction. In this study, 6,8,1′‐tri‐O‐methylaverantin also induced HO‐1 protein expression in primary microglial cells, and this correlated with anti‐neuroinflammatory effects observed in LPS‐stimulated primary microglial cells. In conclusion, 6,8,1′‐tri‐O‐methylaverantin represents a potential candidate for use in the development of therapeutic agents for the regulation of neuroinflammation in neurodegenerative diseases.


Pharmaceutical Biology | 2018

Anti-neuroinflammatory effects of cudraflavanone A isolated from the chloroform fraction of Cudrania tricuspidata root bark

Kwan-Woo Kim; Tran Hong Quang; Wonmin Ko; Dong-Cheol Kim; Chi-Su Yoon; Hyuncheol Oh; Youn-Chul Kim

Abstract Context: Cudrania tricuspidata Bureau (Moraceae) is an important source of traditional Korean and Chinese medicines used to treat neuritis and inflammation. Objective: The anti-neuroinflammatory effects of cudraflavanone A isolated from a chloroform fraction of C. tricuspidata were investigated in LPS-induced BV2 cells. Materials and methods: Cudraflavanone A was isolated from the root of C. tricuspidata, and its structure was determined by MS and NMR data. Cytotoxicity of the compound was examined by MTT assay, indicating no cytotoxicity at 5–40 μM of cudraflavanone A. NO concentration was measured by the Griess reaction, and the levels of PGE2, cytokines and COX-2 enzyme activity were measured by each ELISA kit. The mRNA levels of cytokines were analysed by quantitative-PCR. The expression of iNOS, COX-2, HO-1, NF-κB, MAPKs and Nrf2 was detected by Western blot. Results: Cudraflavanone A had no major effect on cell viability at 40 μM indicating 91.5% viability. It reduced the production of NO (IC50 = 22.2 μM), PGE2 (IC50 = 20.6 μM), IL-1β (IC50 = 24.7 μM) and TNF-α (IC50 = 33.0 μM) in LPS-stimulated BV2 cells. It also suppressed iNOS protein, IL-1β and TNF-α mRNA expression. These effects were associated with the inactivation of NF-κB, JNK and p38 MAPK pathways. This compound mediated its anti-neuroinflammatory effects by inducing HO-1 protein expression via increased nuclear translocation of Nrf2. Discussion and conclusions: The present study suggests a potent effect of cudraflavanone A to prevent neuroinflammatory diseases. Further investigation is necessary to elucidate specific molecular mechanism of cudraflavanone A.


Neurotoxicity Research | 2018

Desoxo-narchinol A and Narchinol B Isolated from Nardostachys jatamansi Exert Anti-neuroinflammatory Effects by Up-regulating of Nuclear Transcription Factor Erythroid-2-Related Factor 2/Heme Oxygenase-1 Signaling

Kwan-Woo Kim; Chi-Su Yoon; Youn-Chul Kim; Hyuncheol Oh

We previously reported that desoxo-narchinol A and narchinol B from Nardostachys jatamansi DC (Valerianaceae) inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2), and the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 protein in lipopolysaccharide (LPS)-stimulated BV2 and primary microglial cells. In this study, we aimed to elucidate the molecular mechanism underlying the anti-neuroinflammatory effects of desoxo-narchinol A and narchinol B. These two compounds inhibited the nuclear factor (NF)-κB pathway, by repressing the phosphorylation and degradation of inhibitor kappa B (IκB)-α, nuclear translocation of the p65/p50 heterodimer, and DNA-binding activity of the p65 subunit. Furthermore, both compounds induced heme oxygenase-1 (HO-1) protein expression, which was mediated by the activation of nuclear transcription factor erythroid-2-related factor 2 (Nrf2). Activation of the Nrf2/HO-1 pathway by desoxo-narchinol A was shown to be regulated by increased phosphorylation of p38 and extracellular signal-regulated kinase (ERK), whereas only p38 was involved in narchinol B-induced activation of the Nrf2/HO-1 pathway. In addition, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling was also involved in the activation of HO-1 by desoxo-narchinol A and narchinol B. These compounds also increased the phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine-9 residue, following phosphorylation of Akt. The anti-neuroinflammatory effect of desoxo-narchinol A and narchinol B was partially blocked by a selective HO-1 inhibitor, suggesting that this effect is partly mediated by HO-1 induction. In addition, both compounds also induced HO-1 protein expression in rat-derived primary microglial cells, which was correlated with their anti-neuroinflammatory effects in LPS-stimulated primary microglial cells. In conclusion, desoxo-narchinol A and narchinol B are potential candidates for the development of preventive agents for the regulation of neuroinflammation in neurodegenerative diseases.


Molecules | 2018

Lupane Triterpenes from the Leaves of Acanthopanax gracilistylus

Xiao-Jun Li; Qin-Peng Zou; Xiang Wang; Kwan-Woo Kim; Mao-Fang Lu; Sung-kwon Ko; Chang-Soo Yook; Youn-Chul Kim; Xiang-Qian Liu

The phytochemical study on the leaves of Acanthopanax gracilistylus (Araliaceae) resulted in the discovery of a new lupane-triterpene compound, acangraciligenin S (1), and a new lupane-triterpene glycoside, acangraciliside S (2), as well as two known ones, 3α,11α-dihydroxy-lup-20(29)-en-23,28-dioic acid (3) and acankoreoside C (4). Their chemical structures were elucidated by mass, 1D- and 2D-nuclear magnetic resonance (NMR) spectroscopy. The chemical structures of the new compounds 1 and 2 were determined to be 1β,3α-dihydroxy-lup-20(29)-en-23, 28-dioic acid and 1β,3α-dihydroxy-lup-20(29)-en-23,28-dioic acid 28-O-[α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl] ester, respectively. The anti-neuroinflammatory activity of the selective compounds, 1 and 3, were evaluated with lipopolysaccharide (LPS)-induced BV2 microglia. The tested compounds showed moderate inhibitory effect of nitric oxide (NO) production.


Molecules | 2018

Isolation of Novel Sesquiterpeniods and Anti-neuroinflammatory Metabolites from Nardostachys jatamansi

Chi-Su Yoon; Dong-Cheol Kim; Jin-Soo Park; Kwan-Woo Kim; Youn-Chul Kim; Hyuncheol Oh

Nardostachys jatamansi contains various types of sesquiterpenoids that may play an important role in the potency of plant’s anti-inflammatory effects, depending on their structure. In this study, five new sesquiterpenoids, namely kanshone L (1), kanshone M (2), 7-methoxydesoxo-narchinol (3), kanshone N (4), and nardosdaucanol (5), were isolated along with four known terpenoids (kanshone D (6), nardosinanone G (7), narchinol A (8), and nardoaristolone B (9)) from the rhizomes and roots of Nardostachys jatamansi. Their structures were determined by analyzing 1D and 2D NMR and MS data. Among the nine sesquiterpenoids, compounds 3, 4, and 8 were shown to possess dose-dependent inhibitory effects against lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in BV2 microglial cells. Furthermore, compounds 3, 4, and 8 exhibited anti-neuroinflammatory effects by inhibiting the production of pro-inflammatory mediators, including prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) proteins, as well as pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-12 and tumor necrosis factor-α (TNF-α), in LPS-stimulated BV2 microglial cells. Moreover, these compounds were shown to inhibit the activation of the NF-κB signaling pathway in LPS-stimulated BV2 microglial cells by suppressing the phosphorylation of IκB-α and blocking NF-κB translocation. In conclusion, five new and four known sesquiterpenoids were isolated from Nardostachys jatamansi, and compounds 3, 4, and 8 exhibited anti-neuroinflammatory effects in LPS-stimulated BV2 microglial cells through inhibiting of NF-κB signaling pathway.


Inflammation | 2018

Nardosinone-Type Sesquiterpenes from the Hexane Fraction of Nardostachys jatamansi Attenuate NF-κB and MAPK Signaling Pathways in Lipopolysaccharide-Stimulated BV2 Microglial Cells

Wonmin Ko; Jin Soo Park; Kwan-Woo Kim; Jong Won Kim; Youn-Chul Kim; Hyuncheol Oh

Four nardosinone-type sesquiterpenes, nardosinone, isonardosinone, kanshone E, and kanshone B, were isolated from the hexane fraction of Nardostachys jatamansi (Valerianaceae) methanol extract. The structures of these compounds were mainly established by analyzing the data obtained from nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). In this study, we investigated their anti-neuroinflammatory effects in lipopolysaccharide (LPS)-induced BV2 microglial cells. The results showed that nardosinone-type sesquiterpenes inhibited the production of pro-inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-induced BV2 microglial cells. These inhibitory effects were correlated with the downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, these sesquiterpenes also attenuated the mRNA expression of pro-inflammatory cytokines including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in LPS-induced BV2 microglial cells. During the evaluation of the signaling pathways involved in these anti-neuroinflammatory effects, western blot analysis and DNA-binding activity assay revealed that the suppression of inflammatory reaction by these sesquiterpenes was mediated by the inactivation of nuclear factor-kappa B (NF-κB) pathway. These sesquiterpenes also suppressed the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways in LPS-stimulated BV2 microglial cells. Taken together, these four nardosinone-type sesquiterpenes inhibited NF-κB- and MAPK-mediated inflammatory pathways, demonstrating their potential role in the treatment of neuroinflammation conditions.


Archives of Pharmacal Research | 2017

Anti-inflammatory effects of secondary metabolites isolated from the marine-derived fungal strain Penicillium sp. SF-5629

Nguyen Thi Thanh Ngan; Tran Hong Quang; Kwan-Woo Kim; Hye Jin Kim; Jae Hak Sohn; Dae Gill Kang; Ho Sub Lee; Youn-Chul Kim; Hyuncheol Oh


Natural product sciences | 2016

Chemical Constituents from Leaves of Pileostegia viburnoides Hook.f.et Thoms

Xiao Jun Li; Zu Zhen Liu; Kwan-Woo Kim; Xiang Wang; Zhi Li; Youn-Chul Kim; Chang Soo Yook; Xiang Qian Liu

Collaboration


Dive into the Kwan-Woo Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge