Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chi-Su Yoon is active.

Publication


Featured researches published by Chi-Su Yoon.


Bioorganic & Medicinal Chemistry Letters | 2014

Tanzawaic acid derivatives from a marine isolate of Penicillium sp. (SF-6013) with anti-inflammatory and PTP1B inhibitory activities

Tran Hong Quang; Nguyen Thi Thanh Ngan; Wonmin Ko; Dong-Cheol Kim; Chi-Su Yoon; Jae Hak Sohn; Joung Han Yim; Youn-Chul Kim; Hyuncheol Oh

Chemical investigation of a marine-derived fungus Penicillium sp. SF-6013 resulted in the discovery of a new tanzawaic acid derivative, 2E,4Z-tanzawaic acid D (1), together with four known analogues, tanzawaic acids A (2) and D (3), a salt form of tanzawaic acid E (4), and tanzawaic acid B (5). Their structures were mainly determined by analysis of NMR and MS data, along with chemical methods. Preliminary screening for anti-inflammatory effects in lipopolysaccharide (LPS)-activated microglial BV-2 cells showed that compounds 1, 2, and 5 inhibited the production of nitric oxide (NO) with IC50 values of 37.8, 7.1, and 42.5 μM, respectively. Compound 2 also inhibited NO production in LPS-stimulated RAW264.7 murine macrophages with an IC50 value of 27.0 μM. Moreover, these inhibitory effects correlated with the suppressive effect of compound 2 on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW264.7 and BV2 cells. In addition, compounds 2 and 5 significantly inhibited the activity of protein tyrosine phosphatase 1B (PTP1B) with the same IC50 value (8.2 μM).


International Immunopharmacology | 2014

Anti-neuroinflammatory effect of aurantiamide acetate from the marine fungus Aspergillus sp. SF-5921: Inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced mouse BV2 microglial cells

Chi-Su Yoon; Dong-Cheol Kim; Dong-Sung Lee; Kyoung-Su Kim; Wonmin Ko; Jae Hak Sohn; Joung Han Yim; Youn-Chul Kim; Hyuncheol Oh

In the course of a search for anti-neuroinflammatory metabolites from marine fungi, aurantiamide acetate (1) was isolated from marine-derived Aspergillus sp. as an anti-neuroinflammatory component. Compound 1 dose-dependently inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in BV2 microglial cells. It also attenuated inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and other pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). In a further study designed to elucidate the mechanism of its anti-neuroinflammatory effect, compound 1 was shown to block the activation of nuclear factor-kappa B (NF-κB) in lipopolysaccharide (LPS)-induced BV2 microglial cells by inhibiting the phosphorylation of the inhibitor kappa B-α (IκB)-α. In addition, compound 1 decreased the phosphorylation levels of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs). These results suggest that compound 1 has an anti-neuroinflammatory effect on LPS stimulation through its inhibition of the NF-κB, JNK and p38 pathways.


Molecules | 2015

Protein Tyrosine Phosphatase 1B Inhibitors from the Roots of Cudrania tricuspidata

Tran Hong Quang; Nguyen Thi Thanh Ngan; Chi-Su Yoon; Kwang-Ho Cho; Dae Gill Kang; Ho Sub Lee; Youn-Chul Kim; Hyuncheol Oh

A chemical investigation of the methanol extract from the roots of Cudrania tricuspidata resulted in the isolation of 16 compounds, including prenylated xanthones 1–9 and flavonoids 10–16. Their structures were identified by NMR spectroscopy and mass spectrometry and comparisons with published data. Compounds 1–9 and 13–16 significantly inhibited PTP1B activity in a dose dependent manner, with IC50 values ranging from 1.9–13.6 μM. Prenylated xanthones showed stronger PTP1B inhibitory effects than the flavonoids, suggesting that they may be promising targets for the future discovery of novel PTP1B inhibitors. Furthermore, kinetic analyses indicated that compounds 1 and 13 inhibited PTP1B in a noncompetitive manner; therefore, they may be potential lead compounds in the development of anti-obesity and -diabetic agents.


Molecules | 2016

Anti-Inflammatory Effects and Mechanisms of Action of Coussaric and Betulinic Acids Isolated from Diospyros kaki in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages

Kyoung-Su Kim; Dong-Sung Lee; Dong-Cheol Kim; Chi-Su Yoon; Wonmin Ko; Hyuncheol Oh; Youn-Chul Kim

Diospyros kaki Thunb. is widely distributed in East Asian countries, its leaves being mainly used for making tea. In this study, coussaric acid (CA) and betulinic acid (BA), both triterpenoid compounds, were obtained from D. kaki leaf extracts through bioassay-guided isolation. CA and BA showed anti-inflammatory effects via inhibition of the nuclear factor-κB (NF-κB) pathway, providing important information on their anti-inflammatory mechanism. Furthermore, they markedly inhibited nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages, and suppressed tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) levels. Furthermore, they decreased protein expression of inducible nitric oxide synthase and cyclooxygenase-2. Pre-treatment with CA and BA inhibited LPS-induced NF-κB. We further examined the effects of CA and BA on heme oxygenase (HO)-1 expression in RAW 264.7 macrophages: BA induced HO-1 protein expression in a dose-dependent manner, while CA had no effect. We also investigated whether BA treatment induced nuclear translocation of Nrf2. BA inhibited LPS-induced NF-κB-binding activity, as well as pro-inflammatory mediator and cytokine production (e.g., NO, PGE2, TNF-α, IL-1β, IL-6), by partial reversal of this effect by SnPP, an inhibitor of HO-1. These findings further elucidate the anti-inflammatory mechanism of CA and BA isolated from D. kaki.


International Journal of Molecular Sciences | 2016

Prenylated Flavonoids from Cudrania tricuspidata Suppress Lipopolysaccharide-Induced Neuroinflammatory Activities in BV2 Microglial Cells

Dong-Cheol Kim; Chi-Su Yoon; Tran Hong Quang; Wonmin Ko; Jong-Su Kim; Hyuncheol Oh; Youn-Chul Kim

In Korea and China, Cudrania tricuspidata Bureau (Moraceae) is an important traditional medicinal plant used to treat lumbago, hemoptysis, and contusions. The C. tricuspidata methanol extract suppressed both production of NO and PGE2 in BV2 microglial cells. Cudraflavanone D (1), isolated from this extract, remarkably suppressed the protein expression of inducible NO synthase and cyclooxygenase-2, and decreased the levels of NO and PGE2 in BV2 microglial cells exposed to lipopolysaccharide. Cudraflavanone D (1) also decreased IL-6, TNF-α, IL-12, and IL-1β production, blocked nuclear translocation of NF-κB heterodimers (p50 and p65) by interrupting the degradation and phosphorylation of inhibitor of IκB-α, and inhibited NF-κB binding. In addition, cudraflavanone D (1) suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK pathways. This study indicated that cudraflavanone D (1) can be a potential drug candidate for the cure of neuroinflammation.


Evidence-based Complementary and Alternative Medicine | 2014

KCHO-1, a Novel Antineuroinflammatory Agent, Inhibits Lipopolysaccharide-Induced Neuroinflammatory Responses through Nrf2-Mediated Heme Oxygenase-1 Expression in Mouse BV2 Microglia Cells

Dong-Sung Lee; Wonmin Ko; Chi-Su Yoon; Dong-Cheol Kim; Jinju Yun; Jun-Kyung Lee; Ki-Young Jun; Ilhong Son; Dong-Woung Kim; Bong-Keun Song; Seulah Choi; Jun-Hyeog Jang; Hyuncheol Oh; Sungchul Kim; Youn-Chul Kim

The brain is vulnerable to oxidative stress and inflammation that can occur as a result of aging or neurodegenerative diseases. Our work has sought to identify natural products that regulate heme oxygenase (HO)-1 and to determine their mechanism of action in neurodegenerative diseases. KCHO-1 is a novel herbal therapeutic containing 30% ethanol (EtOH) extracts from nine plants. In this study, we investigated the antineuroinflammatory effects of KCHO-1 in lipopolysaccharide- (LPS-) treated mouse BV2 microglia. KCHO-1 inhibited the protein expression of inducible nitric oxide synthase (iNOS), iNOS-derived nitric oxide (NO), cyclooxygenase- (COX-) 2, and COX-2-derived prostaglandin E2 (PGE2) in LPS-stimulated BV2 microglia. It also reduced tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 production. This effect was correlated with the suppression of inhibitor of nuclear factor kappa B-α (IκB-α) phosphorylation and degradation and nuclear factor kappa B (NF-κB) translocation and DNA binding. Additionally, KCHO-1 upregulated HO-1 expression by promoting nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in mouse BV2 microglia. Tin protoporphyrin (SnPP), an HO activity inhibitor, was used to verify the inhibitory effects of KCHO-1 on proinflammatory mediators and proteins associated with HO-1 expression. Our data suggest that KCHO-1 has therapeutic potential in neurodegenerative diseases caused by neuroinflammation.


Molecules | 2016

A Prenylated Xanthone, Cudratricusxanthone A, Isolated from Cudrania tricuspidata Inhibits Lipopolysaccharide-Induced Neuroinflammation through Inhibition of NF-κB and p38 MAPK Pathways in BV2 Microglia

Chi-Su Yoon; Dong-Cheol Kim; Tran Hong Quang; Jungwon Seo; Dae Kang; Ho Lee; Hyuncheol Oh; Youn-Chul Kim

Cudrania tricuspidata Bureau (Moraceae) is an important source of traditional Korean and Chinese medicines used to treat neuritis and inflammation. Cudratricusxanthone A (1), a prenylated xanthone, isolated from C. tricuspidata, has a variety of biological and therapeutic activities. The goal of this study was to examine the effects of compound 1 on neuroinflammation and characterize its mechanism of action in lipopolysaccharide (LPS)-stimulated BV2 microglia. Cudratricusxanthone A (1) suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 enzymes and decreased the production of iNOS-derived nitric oxide and COX-2-derived prostaglandin E2 in LPS-stimulated mouse BV2 microglia. The compound also decreased tumor necrosis factor-α, interleukin (IL)-1β, and IL-12 production; inhibited the phosphorylation and degradation of IκB-α; and blocked the nuclear translocation of p50 and p65 in mouse BV2 microglia induced by LPS. Cudratricusxanthone A (1) had inhibitory effects on nuclear factor kappa B DNA-binding activity. Additionally, it inhibited the p38 mitogen-activated protein kinase signaling pathway. Our data suggests that cudratricusxanthone A (1) may be a useful therapeutic agent in the treatment of neurodegenerative diseases caused by neuroinflammation.


International Journal of Molecular Sciences | 2016

Anti-Inflammatory and Cytoprotective Effects of TMC-256C1 from Marine-Derived Fungus Aspergillus sp. SF-6354 via up-Regulation of Heme Oxygenase-1 in Murine Hippocampal and Microglial Cell Lines.

Dong-Cheol Kim; Kwang-Ho Cho; Wonmin Ko; Chi-Su Yoon; Jae Hak Sohn; Joung Han Yim; Youn-Chul Kim; Hyuncheol Oh

In the course of searching for bioactive secondary metabolites from marine fungi, TMC-256C1 was isolated from an ethyl acetate extract of the marine-derived fungus Aspergillus sp. SF6354. TMC-256C1 displayed anti-neuroinflammatory effect in BV2 microglial cells induced by lipopolysaccharides (LPS) as well as neuroprotective effect against glutamate-stimulated neurotoxicity in mouse hippocampal HT22 cells. TMC-256C1 was shown to develop a cellular resistance to oxidative damage caused by glutamate-induced cytotoxicity and reactive oxygen species (ROS) generation in HT22 cells, and suppress the inflammation process in LPS-stimulated BV2 cells. Furthermore, the neuroprotective and anti-neuroinflammatory activities of TMC-256C1 were associated with upregulated expression of heme oxygenase (HO)-1 and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in HT22 and BV2 cells. We also found that TMC-256C1 activated p38 mitogen-activated protein kinases (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways in HT22 and BV2 cells. These results demonstrated that TMC-256C1 activates HO-1 protein expression, probably by increasing nuclear Nrf2 levels via the activation of the p38 MAPK and PI3K/Akt pathways.


Food Chemistry | 2016

Anti-neuroinflammatory activities of indole alkaloids from kanjang (Korean fermented soy source) in lipopolysaccharide-induced BV2 microglial cells

Dong-Cheol Kim; Tran Hong Quang; Chi-Su Yoon; Nguyen Thi Thanh Ngan; Seong-Il Lim; So-Young Lee; Youn-Chul Kim; Hyuncheol Oh

Kanjang (Korean soy sauce) is a byproduct of the production of the Korean fermented soybean. In the present study, seven indole alkaloid derivatives were isolated from methanol extract of kanjang. Their structures were identified as 1-propyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (1), 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (2), 1-methyl-1,2,3,4-tetrahydro-β-carboline-1-carboxylic acid (3), 3-indoleacetic acid (4), Nb-acetyltryptamine (5), 1-methyl-3,4-dihydro-β-carboline (6), and flazine (7) by NMR and MS analyses. Preliminary screening for anti-neuroinflammatory effects of isolated indole alkaloids in lipopolysaccharide (LPS)-stimulated BV2 cells revealed that these compounds inhibited the production of nitric oxide and prostaglandin E2. For the subsequent investigation of anti-neuroinflammatory action of these metabolites, compounds 4 and 7 were selected, and the results revealed that these inhibitory effects correlated with the suppressive effect of 4 and 7 on inducible nitric oxide synthase and cyclooxygenase-2 expression in LPS-stimulated BV2 cells. In regards to the mechanism of the anti-inflammatory effect, 4 and 7 significantly inhibited the nuclear factor-kappa B pathway.


Journal of Natural Products | 2016

Marine-Derived Secondary Metabolite, Griseusrazin A, Suppresses Inflammation through Heme Oxygenase-1 Induction in Activated RAW264.7 Macrophages

Dong-Sung Lee; Chi-Su Yoon; Yong-Taek Jung; Jung-Hoon Yoon; Youn-Chul Kim; Hyuncheol Oh

A new secondary metabolite, named griseusrazin A (1), was isolated from the marine-derived bacterium Streptomyces griseus subsp. griseus. The structure of the compound was determined by analysis of spectroscopic data including MS, COSY, HSQC, HMBC, and (15)N-HMBC data. Griseusrazin A (1) inhibited the production of inflammatory mediators, such as prostaglandin E2 and nitric oxide, which was mediated through the suppression of the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The production of pro-inflammatory cytokines, such as interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, in the LPS-stimulated cells was also effectively blocked by griseusrazin A (1). Furthermore, this anti-inflammatory activity of 1 was linked to its inhibitory effects against the nuclear translocation of NF-κB p50 and p65, as wells as NF-κB binding activity. In the further study to elucidate the anti-inflammatory mechanism, 1 was shown to induce heme oxygenase-1 (HO-1) expression through the enhancement of nuclear translocation of nuclear factor E2-related factor 2. Furthermore, the anti-inflammatory activity of 1 in the LPS-stimulated cells was partially reversed by an HO inhibitor, tin protoporphyrin. These results indicate that the anti-inflammatory effect of 1 is associated with Nrf2-mediated HO-1 expression.

Collaboration


Dive into the Chi-Su Yoon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tran Hong Quang

Vietnam Academy of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge