Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kwang-Hee Bae is active.

Publication


Featured researches published by Kwang-Hee Bae.


World Journal of Stem Cells | 2014

Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells

Anna Park; Won Kon Kim; Kwang-Hee Bae

Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue (WAT) or brown adipose tissue (BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brown-like adipocytes were discovered in WAT. These brown-like adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expression pattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation (adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes.


Cellular and Molecular Life Sciences | 2010

Annexin A4 interacts with the NF-κB p50 subunit and modulates NF-κB transcriptional activity in a Ca2+-dependent manner

Young-Joo Jeon; Do Hyung Kim; Hyeyun Jung; Sang J. Chung; Seung-Wook Chi; Sayeon Cho; Sang Chul Lee; Byoung Chul Park; Sung Goo Park; Kwang-Hee Bae

Previously, we identified annexin A4 (ANXA4) as a candidate substrate of caspase-3. Proteomic studies were performed to identify interacting proteins with a view to determining the roles of ANXA4. ANXA4 was found to interact with the p105. Subsequent studies revealed that ANXA4 interacts with NF-κB through the Rel homology domain of p50. Furthermore, the interaction is markedly increased by elevated Ca2+ levels. NF-κB transcriptional activity assays demonstrated that ANXA4 suppresses NF-κB transcriptional activity in the resting state. Following treatment with TNF-α or PMA, ANXA4 also suppressed NF-κB transcriptional activity, which was upregulated significantly early after etoposide treatment. This difference may be due to the intracellular Ca2+ level. Additionally, ANXA4 translocates to the nucleus together with p50, and imparts greater resistance to apoptotic stimulation by etoposide. Our results collectively indicate that ANXA4 differentially modulates the NF-κB signaling pathway, depending on its interactions with p50 and the intracellular Ca2+ ion level.


Journal of Lipid Research | 2012

Acetylation of malate dehydrogenase 1 promotes adipogenic differentiation via activating its enzymatic activity

Eun Young Kim; Won Kon Kim; Hyo Jin Kang; Jeong-Hoon Kim; Sang J. Chung; Yeon Soo Seo; Sung Goo Park; Sang Chul Lee; Kwang-Hee Bae

Acetylation is one of the most crucial post-translational modifications that affect protein function. Protein lysine acetylation is catalyzed by acetyltransferases, and acetyl-CoA functions as the source of the acetyl group. Additionally, acetyl-CoA plays critical roles in maintaining the balance between carbohydrate metabolism and fatty acid synthesis. Here, we sought to determine whether lysine acetylation is an important process for adipocyte differentiation. Based on an analysis of the acetylome during adipogenesis, various proteins displaying significant quantitative changes were identified by LC-MS/MS. Of these identified proteins, we focused on malate dehydrogenase 1 (MDH1). The acetylation level of MDH1 was increased up to 6-fold at the late stage of adipogenesis. Moreover, overexpression of MDH1 in 3T3-L1 preadipocytes induced a significant increase in the number of cells undergoing adipogenesis. The introduction of mutations to putative lysine acetylation sites showed a significant loss of the ability of cells to undergo adipogenic differentiation. Furthermore, the acetylation of MDH1 dramatically enhanced its enzymatic activity and subsequently increased the intracellular levels of NADPH. These results clearly suggest that adipogenic differentiation may be regulated by the acetylation of MDH1 and that the acetylation of MDH1 is one of the cross-talk mechanisms between adipogenesis and the intracellular energy level.


Molecular and Cellular Neuroscience | 2007

Co-chaperone CHIP promotes aggregation of ataxin-1

Jung Young Choi; Jeong Hee Ryu; Hyo-Sun Kim; Sung Goo Park; Kwang-Hee Bae; Sunghyun Kang; Pyung Keun Myung; Sayeon Cho; Byoung Chul Park; Do Hee Lee

Recent studies demonstrated that co-chaperone/E3 ligase CHIP (C-terminus of hsp70-interacting protein) mediates the ubiquitylation and suppresses the aggregation of polyglutamine (polyQ) proteins, such as huntingtin or ataxin-3. In this study, we investigated the effects of CHIP on the degradation of another polyQ protein ataxin-1. Interestingly CHIP associates not only with the polyQ-expanded ataxin-1 but also with the normal ataxin-1. Moreover, by enhancing ataxin-1 ubiquitylation, CHIP over-expression leads to a reduction in the solubility of ataxin-1 and thus increases the aggregate formation, especially that of polyQ-expanded ataxin-1. Domain analysis revealed that the TPR domain is required for the promotion of aggregation. By contrast, other co-chaperones or E3 ligases, such as BAG-1 or parkin, did not show similar effects on the aggregation of ataxin-1. Importantly, the effect of CHIP is impaired by the mutation of Ser776 of ataxin-1 whose phosphorylation is crucial for ataxin-1 aggregation. Our findings suggest that the role of CHIP in aggregation of polyQ proteins greatly varies depending on the context of full-length polyQ proteins.


Journal of the American Chemical Society | 2011

Molecular mimicry-based repositioning of nutlin-3 to anti-apoptotic Bcl-2 family proteins.

Ji-Hyang Ha; Eun-Young Won; Jae-Sun Shin; Mi Jang; Kyoung-Seok Ryu; Kwang-Hee Bae; Sung Goo Park; Byoung Chul Park; Ho Sup Yoon; Seung-Wook Chi

The identification of off-target binding of drugs is a key to repositioning drugs to new therapeutic categories. Here we show the universal interactions of the p53 transactivation domain (p53TAD) with various anti-apoptotic Bcl-2 family proteins via a mouse double minute 2 (MDM2) binding motif, which play an important role in transcription-independent apoptotic pathways of p53. Interestingly, our structural studies reveal that the anti-apoptotic Bcl-2 family proteins and MDM2 share a similar mode of interaction with the p53TAD. On the basis of this close molecular mimicry, our NMR results demonstrate that the potent MDM2 antagonists Nutlin-3 and PMI bind to the anti-apoptotic Bcl-2 family proteins in a manner analogous to that with the p53TAD.


Journal of Biological Chemistry | 2013

Dual-site Interactions of p53 Protein Transactivation Domain with Anti-apoptotic Bcl-2 Family Proteins Reveal a Highly Convergent Mechanism of Divergent p53 Pathways

Ji-Hyang Ha; Jae-Sun Shin; Mi-Kyung Yoon; Min-Sung Lee; Fahu He; Kwang-Hee Bae; Ho Sup Yoon; Chong-Kil Lee; Sung Goo Park; Yutaka Muto; Seung-Wook Chi

Background: Interactions between p53 and Bcl-2 family proteins serve a critical role in transcription-independent p53 apoptosis. Results: We studied the interactions of p53TAD2 with anti-apoptotic Bcl-2 family proteins at the atomic level by NMR, mutagenesis, and structure calculation. Conclusion: Bcl-XL/Bcl-2, MDM2, and CBP/p300 share similar modes of binding to the dual p53TAD motifs. Significance: Dual-site interaction of p53TAD is a highly conserved mechanism in the transcription-dependent and transcription-independent p53 apoptotic pathways. Molecular interactions between the tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins play an important role in the transcription-independent apoptosis of p53. The p53 transactivation domain (p53TAD) contains two conserved ΦXXΦΦ motifs (Φ indicates a bulky hydrophobic residue and X is any other residue) referred to as p53TAD1 (residues 15–29) and p53TAD2 (residues 39–57). We previously showed that p53TAD1 can act as a binding motif for anti-apoptotic Bcl-2 family proteins. In this study, we have identified p53TAD2 as a binding motif for anti-apoptotic Bcl-2 family proteins by using NMR spectroscopy, and we calculated the structures of Bcl-XL/Bcl-2 in complex with the p53TAD2 peptide. NMR chemical shift perturbation data showed that p53TAD2 peptide binds to diverse members of the anti-apoptotic Bcl-2 family independently of p53TAD1, and the binding between p53TAD2 and p53TAD1 to Bcl-XL is competitive. Refined structural models of the Bcl-XL·p53TAD2 and Bcl-2·p53TAD2 complexes showed that the binding sites occupied by p53TAD2 in Bcl-XL and Bcl-2 overlap well with those occupied by pro-apoptotic BH3 peptides. Taken together with the mutagenesis, isothermal titration calorimetry, and paramagnetic relaxation enhancement data, our structural comparisons provided the structural basis of p53TAD2-mediated interaction with the anti-apoptotic proteins, revealing that Bcl-XL/Bcl-2, MDM2, and cAMP-response element-binding protein-binding protein/p300 share highly similar modes of binding to the dual p53TAD motifs, p53TAD1 and p53TAD2. In conclusion, our results suggest that the dual-site interaction of p53TAD is a highly conserved mechanism underlying target protein binding in the transcription-dependent and transcription-independent apoptotic pathways of p53.


Experimental and Molecular Medicine | 2008

Glycoproteomic analysis of plasma from patients with atopic dermatitis: CD5L and ApoE as potential biomarkers

Won Kon Kim; Hyang‐Ran Hwang; Do Hyung Kim; Phil Young Lee; Yu Jung In; Hye-Young Ryu; Sung Goo Park; Kwang-Hee Bae; Sang Chul Lee

Atopic dermatitis (AD) is an inflammatory skin disorder that is both uncomfortable and distressing to patients, and its prevalence has been steadily increasing. It is obvious that the identification of efficient markers of AD in plasma would offer the possibility of effective diagnosis, prevention, and treatment strategies. In this study, a proteomic approach was used to analyze plasma glycoproteins from both children with AD and healthy child donors. Several protein spots showing significant quantitative changes in the AD patients were identified. Through sequential studies, it was confirmed that CD5L and ApoE were significantly up-regulated or down-regulated, respectively, in the plasma from AD patients compared with that from healthy donors. In addition, we suggest that the up-regulated CD5L in AD patients causes eosinophilia by inhibiting apoptosis or promoting the proliferation of eosinophils either in combination with or without IL-5. The glycoproteomic data in this study provides clues to understanding the mechanism of atopic alterations in plasma and suggests AD-related proteins can be used as candidate markers for AD.


Biochemical and Biophysical Research Communications | 2010

Molecular interaction between HAX-1 and XIAP inhibits apoptosis.

Young Ji Kang; Mi Jang; Yun Kyung Park; Sunghyun Kang; Kwang-Hee Bae; Sayeon Cho; Chong-Kil Lee; Byoung Chul Park; Seung-Wook Chi; Sung Goo Park

Caspase-3 is an important executor caspase that plays an essential role in apoptosis. Recently, HS1-associated protein X1 (HAX-1) was found to be a substrate of caspase-3. Although HAX-1 has serve multifunctional roles in cellular functions such as cell survival and calcium homeostasis, the detailed functional mechanism of HAX-1 remains still unclear. In this study, we performed proteomic experiments to identify the HAX-1 interactome. Through immunoprecipitation and 2D gel electrophoresis, we identified X-linked inhibitor of apoptosis protein (XIAP) as a novel HAX-1-interacting protein. By performing the GST pull-down assay, we defined the interaction domains in HAX-1 and XIAP, showing that HAX-1 binds to the BIR2 and BIR3 domains of XIAP whereas XIAP binds to the C-terminal domain of HAX-1. In addition, surface plasma resonance experiments showed that both BIR2 and BIR3 domains of XIAP bind to HAX-1 with affinity similar to that of full-length XIAP, indicating that either domain is necessary and sufficient for tight binding to HAX-1. Taken together with the observation that HAX-1 suppresses the polyubiquitination of XIAP, the cell viability assay results suggest that the formation of the HAX-1-XIAP complex inhibits apoptosis by enhancing the stability of XIAP against proteosomal degradation.


International Journal of Molecular Sciences | 2016

Metabolic Adaptation in Obesity and Type II Diabetes: Myokines, Adipokines and Hepatokines

Kyoung-Jin Oh; Da Som Lee; Won Kon Kim; Baek Soo Han; Sang Chul Lee; Kwang-Hee Bae

Obesity and type II diabetes are characterized by insulin resistance in peripheral tissues. A high caloric intake combined with a sedentary lifestyle is the leading cause of these conditions. Whole-body insulin resistance and its improvement are the result of the combined actions of each insulin-sensitive organ. Among the fundamental molecular mechanisms by which each organ is able to communicate and engage in cross-talk are cytokines or peptides which stem from secretory organs. Recently, it was reported that several cytokines or peptides are secreted from muscle (myokines), adipose tissue (adipokines) and liver (hepatokines) in response to certain nutrition and/or physical activity conditions. Cytokines exert autocrine, paracrine or endocrine effects for the maintenance of energy homeostasis. The present review is focused on the relationship and cross-talk amongst muscle, adipose tissue and the liver as secretory organs in metabolic diseases.


Biochemical and Biophysical Research Communications | 2013

Retinoic acid inhibits adipogenesis via activation of Wnt signaling pathway in 3T3-L1 preadipocytes.

Dong Min Kim; Hye-Ryung Choi; Anna Park; Sang-Mo Shin; Kwang-Hee Bae; Sang Chul Lee; Il-Chul Kim; Won Kon Kim

Although retinoic acid (RA) is well known to inhibit the differentiation of 3T3-L1 cells into adipocytes both in vivo and in vitro, its molecular mechanism is not fully understood. In this report, we investigate the inhibitory mechanism of adipocyte differentiation by RA in 3T3-L1 cells. Because both RA and Wnt are known to inhibit adipogenesis at a common step involving the inhibition of PPAR-γ expression, we focused on the crosstalk between these two signaling pathways. We found that RA treatment resulted in a dramatic inhibition of adipogenesis, especially at an early phase of differentiation, and led to increased β-catenin protein expression. Moreover, RA enhances the transcriptional activity of β-catenin as well as Wnt gene expression during adipogenesis. Taken together, the present study demonstrated that Wnt/β-catenin signaling may be associated with the RA-induced suppression of adipogenesis and may cooperatively inhibit adipocyte differentiation.

Collaboration


Dive into the Kwang-Hee Bae's collaboration.

Top Co-Authors

Avatar

Sung Goo Park

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Sang Chul Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Byoung Chul Park

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Won Kon Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Seung-Wook Chi

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Sunghyun Kang

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyeyun Jung

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge