Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sung Goo Park is active.

Publication


Featured researches published by Sung Goo Park.


Journal of Immunology | 2009

NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression.

Chul-Su Yang; Dong-Min Shin; Ki-Hye Kim; Zee-Won Lee; Chul-Ho Lee; Sung Goo Park; Yun Soo Bae; Eun-Kyeong Jo

Gp91phox/NADPH oxidase (NOX) 2 is the main catalytic component of NOX, which mediates the phagocytic killing of ingested pathogens via the production of reactive oxygen species (ROS). However, Mycobacterium tuberculosis (Mtb) is relatively resistant to the microbicidal effects of ROS. Thus, the exact roles of NOX2 in the innate immune control against Mtb infection are not fully resolved. In this study, we show that NOX2 is essential for TLR2-dependent inflammatory responses and 1,25-dihydroxyvitamin D3 (1,25D3)-mediated antimicrobial activity against Mtb via cathelicidin expression. NOX2-null macrophages prominently abrogated Mtb-induced ROS production and inflammatory signaling activation in a TLR2-dependent manner. Mtb triggered a physical association between NOX2 and TLR2. In addition, the knockdown of NOX2 inhibited 1,25D3-triggered antimicrobial activity against viable Mtb through the modulation of cathelicidin expression in human macrophages. Treatment of NOX2 knocked down cells with cathelicidin restored the 1,25D3-induced antimicrobial effect, suggesting that the NOX2-dependent induction of cathelicidin in macrophages is part of a defensive strategy against Mtb. Furthermore, cathelicidin expression was required for the Mtb-induced release of ROS and the production of proinflammatory cytokines/chemokines, indicating a positive circuit of inflammation in response to Mtb. Our data collectively demonstrate a novel regulatory mechanism for TLR2-dependent innate responses to Mtb involving crosstalk between NOX2 and TLR2 and the expression of cathelicidin.


FEBS Letters | 2005

Transthyretin-related proteins function to facilitate the hydrolysis of 5-hydroxyisourate, the end product of the uricase reaction

Youra Lee; Do Hee Lee; Chang Won Kho; Ah Young Lee; Mi Jang; Sayeon Cho; Choong Hwan Lee; Jong Suk Lee; Pyung Keun Myung; Byoung Chul Park; Sung Goo Park

Purine catabolic pathway in Bacillus subtilis is consisted of more than 14 genes. Among these genes, pucL and pucM are required for uricase activity. While PucL is known to encode the uricase itself, the function of PucM is still unclear although this protein is also indispensable for uric acid decomposition. Here, we provide evidence that PucM, a transthyretin‐related protein, functions to facilitate the hydrolysis of 5‐hydroxyisourate, the end product of the uricase reaction. Based on these results, we propose that transthyretin‐related proteins present in diverse organisms are not functionally related to transthyretin but actually function as a hydroxyisourate hydrolase.


PLOS ONE | 2013

Neuronal Synapse Formation Induced by Microglia and Interleukin 10

So-Hee Lim; Eunha Park; Boram You; Youngseob Jung; A-Reum Park; Sung Goo Park; Jae-Ran Lee

Recently, it was found that microglia regulated synaptic remodeling of the developing brain, but their mechanisms have not been well understood. In this study, the action of microglia on neuronal synapse formation was investigated, and the primary target of microglial processes was discovered. When the developing microglia were applied to cultured hippocampal neurons without direct contact, the numbers of dendritic spines and excitatory and inhibitory synapses significantly increased. In order to find out the main factor for synaptic formation, the effects of cytokines released from microglia were examined. When recombinant proteins of cytokines were applied to neuronal culture media, interleukin 10 increased the numbers of dendritic spines in addition to excitatory and inhibitory synapses. Interestingly, without external stimuli, the amount of interleukin 10 released from the intact microglia appeared to be sufficient for the induction of synaptic formation. The neutralizing antibodies of interleukin 10 receptors attenuated the induction of the synaptic formation by microglia. The expression of interleukin 10 receptor was newly found in the hippocampal neurons of early developmental stage. When interleukin 10 receptors on the hippocampal neurons were knocked down with specific shRNA, the induction of synaptic formation by microglia and interleukin 10 disappeared. Pretreatment with lipopolysaccharide inhibited microglia from inducing synaptic formation, and interleukin 1β antagonized the induction of synaptic formation by interleukin 10. In conclusion, the developing microglia regulated synaptic functions and neuronal development through the interactions of the interleukin 10 released from the microglia with interleukin 10 receptors expressed on the hippocampal neurons.


Cellular and Molecular Life Sciences | 2010

Annexin A4 interacts with the NF-κB p50 subunit and modulates NF-κB transcriptional activity in a Ca2+-dependent manner

Young-Joo Jeon; Do Hyung Kim; Hyeyun Jung; Sang J. Chung; Seung-Wook Chi; Sayeon Cho; Sang Chul Lee; Byoung Chul Park; Sung Goo Park; Kwang-Hee Bae

Previously, we identified annexin A4 (ANXA4) as a candidate substrate of caspase-3. Proteomic studies were performed to identify interacting proteins with a view to determining the roles of ANXA4. ANXA4 was found to interact with the p105. Subsequent studies revealed that ANXA4 interacts with NF-κB through the Rel homology domain of p50. Furthermore, the interaction is markedly increased by elevated Ca2+ levels. NF-κB transcriptional activity assays demonstrated that ANXA4 suppresses NF-κB transcriptional activity in the resting state. Following treatment with TNF-α or PMA, ANXA4 also suppressed NF-κB transcriptional activity, which was upregulated significantly early after etoposide treatment. This difference may be due to the intracellular Ca2+ level. Additionally, ANXA4 translocates to the nucleus together with p50, and imparts greater resistance to apoptotic stimulation by etoposide. Our results collectively indicate that ANXA4 differentially modulates the NF-κB signaling pathway, depending on its interactions with p50 and the intracellular Ca2+ ion level.


Journal of Bacteriology | 2003

Regulation of fur expression by RpoS and Fur in Vibrio vulnificus

Hyun Jung Lee; Kyung-Je Park; Ah Young Lee; Sung Goo Park; Byoung Chul Park; Kyu-Ho Lee; Soon-Jung Park

In a proteomic analysis of rpoS-deficient Vibrio vulnificus versus the wild type, one of the down-regulated proteins in the rpoS mutant strain was identified as a Fur protein, a ferric uptake regulator. The expression of a fur::luxAB fusion was significantly influenced by sigma factor S, the rpoS gene product, and positively regulated by Fur under iron-limited conditions.


Journal of Lipid Research | 2012

Acetylation of malate dehydrogenase 1 promotes adipogenic differentiation via activating its enzymatic activity

Eun Young Kim; Won Kon Kim; Hyo Jin Kang; Jeong-Hoon Kim; Sang J. Chung; Yeon Soo Seo; Sung Goo Park; Sang Chul Lee; Kwang-Hee Bae

Acetylation is one of the most crucial post-translational modifications that affect protein function. Protein lysine acetylation is catalyzed by acetyltransferases, and acetyl-CoA functions as the source of the acetyl group. Additionally, acetyl-CoA plays critical roles in maintaining the balance between carbohydrate metabolism and fatty acid synthesis. Here, we sought to determine whether lysine acetylation is an important process for adipocyte differentiation. Based on an analysis of the acetylome during adipogenesis, various proteins displaying significant quantitative changes were identified by LC-MS/MS. Of these identified proteins, we focused on malate dehydrogenase 1 (MDH1). The acetylation level of MDH1 was increased up to 6-fold at the late stage of adipogenesis. Moreover, overexpression of MDH1 in 3T3-L1 preadipocytes induced a significant increase in the number of cells undergoing adipogenesis. The introduction of mutations to putative lysine acetylation sites showed a significant loss of the ability of cells to undergo adipogenic differentiation. Furthermore, the acetylation of MDH1 dramatically enhanced its enzymatic activity and subsequently increased the intracellular levels of NADPH. These results clearly suggest that adipogenic differentiation may be regulated by the acetylation of MDH1 and that the acetylation of MDH1 is one of the cross-talk mechanisms between adipogenesis and the intracellular energy level.


Journal of Cell Science | 2009

Regulation of adipogenic differentiation by LAR tyrosine phosphatase in human mesenchymal stem cells and 3T3-L1 preadipocytes.

Won Kon Kim; Hyeyun Jung; Do Hyung Kim; Eun-Young Kim; Jin Woong Chung; Yee Sook Cho; Sung Goo Park; Byoung Chul Park; Yong Ko; Kwang Hee Bae; Sang Chul Lee

Mesenchymal stem cells (MSCs) are multipotent adult stem cells that can differentiate into a variety of mesodermal-lineage cells. MSCs have significant potential in tissue engineering and therapeutic applications; however, the low differentiation and proliferation efficiencies of these cells in the laboratory are fundamental obstacles to their therapeutic use, mainly owing to the lack of information on the detailed signal-transduction mechanisms of differentiation into distinct lineages. With the aid of protein-tyrosine-phosphatase profiling studies, we show that the expression of leukocyte common antigen related (LAR) tyrosine phosphatase is significantly decreased during the early adipogenic stages of MSCs. Knockdown of endogenous LAR induced a dramatic increase in adipogenic differentiation, whereas its overexpression led to decreased adipogenic differentiation in both 3T3-L1 preadipocytes and MSCs. LAR reduces tyrosine phosphorylation of the insulin receptor, in turn leading to decreased phosphorylation of the adaptor protein IRS-1 and its downstream molecule Akt (also known as PKB). We propose that LAR functions as a negative regulator of adipogenesis. Furthermore, our data support the possibility that LAR controls the balance between osteoblast and adipocyte differentiation. Overall, our findings contribute to the clarification of the mechanisms underlying LAR activity in the differentiation of MSCs and suggest that LAR is a candidate target protein for the control of stem-cell differentiation.


Molecular and Cellular Neuroscience | 2007

Co-chaperone CHIP promotes aggregation of ataxin-1

Jung Young Choi; Jeong Hee Ryu; Hyo-Sun Kim; Sung Goo Park; Kwang-Hee Bae; Sunghyun Kang; Pyung Keun Myung; Sayeon Cho; Byoung Chul Park; Do Hee Lee

Recent studies demonstrated that co-chaperone/E3 ligase CHIP (C-terminus of hsp70-interacting protein) mediates the ubiquitylation and suppresses the aggregation of polyglutamine (polyQ) proteins, such as huntingtin or ataxin-3. In this study, we investigated the effects of CHIP on the degradation of another polyQ protein ataxin-1. Interestingly CHIP associates not only with the polyQ-expanded ataxin-1 but also with the normal ataxin-1. Moreover, by enhancing ataxin-1 ubiquitylation, CHIP over-expression leads to a reduction in the solubility of ataxin-1 and thus increases the aggregate formation, especially that of polyQ-expanded ataxin-1. Domain analysis revealed that the TPR domain is required for the promotion of aggregation. By contrast, other co-chaperones or E3 ligases, such as BAG-1 or parkin, did not show similar effects on the aggregation of ataxin-1. Importantly, the effect of CHIP is impaired by the mutation of Ser776 of ataxin-1 whose phosphorylation is crucial for ataxin-1 aggregation. Our findings suggest that the role of CHIP in aggregation of polyQ proteins greatly varies depending on the context of full-length polyQ proteins.


The International Journal of Biochemistry & Cell Biology | 2012

Myostatin inhibits brown adipocyte differentiation via regulation of Smad3-mediated β-catenin stabilization

Won Kon Kim; Hye Ryung Choi; Sung Goo Park; Yong Ko; Kwang Hee Bae; Sang Chul Lee

Brown adipocytes play an important role in regulating energy balance, and there is a good correlation between obesity and the amount of brown adipose tissue. Although the molecular mechanism of white adipocyte differentiation has been well characterized, brown adipogenesis has not been studied extensively. Moreover, extracellular factors that regulate brown adipogenic differentiation are not fully understood. Here, we assessed the mechanism of the regulatory action of myostatin in brown adipogenic differentiation using primary brown preadipocytes. Our results clearly showed that differentiation of brown adipocytes was significantly inhibited by myostatin treatment. In addition, myostatin-induced suppression of brown adipogenesis was observed during the early phase of differentiation. Myostatin induced the phosphorylation of Smad3, which led to increased β-catenin stabilization. These effects were blocked by treatment with a Smad3 inhibitor. Expression of brown adipocyte-related genes, such as PPAR-γ, UCP-1, PGC-1α, and PRDM16, were dramatically down-regulated by treatment with myostatin, and further down-regulated by co-treatment with a β-catenin activator. Taken together, the present study demonstrated that myostatin is a potent negative regulator of brown adipogenic differentiation by modulation of Smad3-induced β-catenin stabilization. Our findings suggest that myostatin could be used as an extracellular factor in the control of brown adipocyte differentiation.


Nature Communications | 2015

Small heterodimer partner interacts with NLRP3 and negatively regulates activation of the NLRP3 inflammasome

Chul-Su Yang; Jwa-Jin Kim; Tae Sung Kim; Phil Young Lee; Soo Yeon Kim; Hyemi Lee; Dong-Min Shin; Loi T. Nguyen; Moo-Seung Lee; Hyo Sun Jin; Kwang-Kyu Kim; Chul-Ho Lee; Myung Hee Kim; Sung Goo Park; Jin-Man Kim; Hueng-Sik Choi; Eun-Kyeong Jo

Excessive activation of the NLRP3 inflammasome results in damaging inflammation, yet the regulators of this process remain poorly defined. Herein, we show that the orphan nuclear receptor small heterodimer partner (SHP) is a negative regulator of NLRP3 inflammasome activation. NLRP3 inflammasome activation leads to an interaction between SHP and NLRP3, proteins that are both recruited to mitochondria. Overexpression of SHP competitively inhibits binding of NLRP3 to apoptosis-associated speck-like protein containing a CARD (ASC). SHP deficiency results in increased secretion of proinflammatory cytokines IL-1β and IL-18, and excessive pathologic responses typically observed in mouse models of kidney tubular necrosis and peritoneal gout. Notably, the loss of SHP results in accumulation of damaged mitochondria and a sustained interaction between NLRP3 and ASC in the endoplasmic reticulum. These data are suggestive of a role for SHP in controlling NLRP3 inflammasome activation through a mechanism involving interaction with NLRP3 and maintenance of mitochondrial homeostasis.

Collaboration


Dive into the Sung Goo Park's collaboration.

Top Co-Authors

Avatar

Byoung Chul Park

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwang-Hee Bae

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Do Hee Lee

Seoul Women's University

View shared research outputs
Top Co-Authors

Avatar

Sang Chul Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Sunghyun Kang

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seung-Wook Chi

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Pyung Keun Myung

Chungnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge