Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kwangjoon Jeong is active.

Publication


Featured researches published by Kwangjoon Jeong.


Frontiers in Microbiology | 2014

Molecular characterization of vulnibactin biosynthesis in Vibrio vulnificus indicates the existence of an alternative siderophore

Wenzhi Tan; Vivek Verma; Kwangjoon Jeong; Soo Young Kim; Che-Hun Jung; Shee Eun Lee; Joon Haeng Rhee

Vibrio vulnificus is a halophilic estuarine bacterium that causes fatal septicemia and necrotizing wound infections in humans. Virulent V. vulnificus isolates produce a catechol siderophore called vulnibactin, made up of one residue of 2, 3-dihydroxybenzoic acid (2, 3-DHBA) and two residues of salicylic acid (SA). Vulnibactin biosynthetic genes (VV2_0828 to VV2_0844) are clustered at one locus of chromosome 2, expression of which is significantly up-regulated in vivo. In the present study, we decipher the biosynthetic network of vulnibactin, focusing specifically on genes around SA and 2, 3-DHBA biosynthetic steps. Deletion mutant of isochorismate pyruvate lyase (VV2_0839) or 2, 3-dihydroxybenzoate-2, 3-dehydrogenase (VV2_0834) showed retarded growth under iron-limited conditions though the latter showed more significant growth defect than the former, suggesting a dominant role of 2, 3-DHBA in the vulnibactin biosynthesis. A double deletion mutant of VV2_0839 and VV2_0834 manifested additional growth defect under iron limitation. Though the growth defect of respective single deletion mutants could be restored by exogenous SA or 2, 3-DHBA, only 2, 3-DHBA could rescue the double mutant when supplied alone. However, double mutant could be rescued with SA only when hydrogen peroxide was supplied exogenously, suggesting a chemical conversion of SA to 2, 3-DHBA. Assembly of two SA and one 2, 3-DHBA into vulnibactin was mediated by two AMP ligase genes (VV2_0836 and VV2_0840). VV2_0836 deletion mutant showed more significant growth defect under iron limitation, suggesting its dominant function. In conclusion, using molecular genetic analytical tools, we confirm that vulnibactin is assembled of both 2, 3-DHBA and SA. However, conversion of SA to 2, 3-DHBA in presence of hydrogen peroxide and growth profile of AMP ligase mutants suggest a plausible existence of yet unidentified alternative siderophore that may be composed solely of 2, 3-DHBA.


Infection and Immunity | 2007

The pyrH gene of Vibrio vulnificus is an essential in vivo survival factor.

Shee Eun Lee; Soo Young Kim; Choon Mee Kim; Mi-Kwang Kim; Young Ran Kim; Kwangjoon Jeong; Hwa-Ja Ryu; Youn Suhk Lee; Sun Sik Chung; Hyon E. Choy; Joon Haeng Rhee

ABSTRACT We have suggested an important role of the pyrH gene during the infectious process of Vibrio vulnificus. Previously, we have identified 12 genes expressed preferentially during human infections by using in vivo-induced antigen technology. Among the in vivo-expressed genes, pyrH encodes UMP kinase catalyzing UMP phosphorylation. Introduction of a deletion mutation to the pyrH gene was lethal to V. vulnificus, and an insertional mutant showed a high frequency of curing. We constructed a site-directed mutant strain (R62H/D77N) on Arg-62 and Asp-77, both predicted to be involved in UMP binding, and characterized the R62H/D77N strain compared with the previously reported insertional mutant. We further investigated the essential role of the pyrH gene in the establishment of infection using the R62H/D77N strain. Cytotoxicity was decreased in the R62H/D77N strain, and the defect was restored by an in trans complementation. The intraperitoneal 50% lethal dose of the R62H/D77N strain increased by 26- and 238,000-fold in normal and iron-overloaded mice, respectively. The growth of the R62H/D77N strain in 50% HeLa cell lysate, 100% human ascitic fluid, and 50% human serum was significantly retarded compared to that of the isogenic wild-type strain. The R62H/D77N mutant also had a critical defect in the ability to survive and replicate even in iron-overloaded mice. These results demonstrate that pyrH is essential for the in vivo survival and growth of V. vulnificus and should be an attractive new target for the development of antibacterial drugs and replication-controllable live attenuated vaccines.


Vaccine | 2013

Flagellin enhances tumor-specific CD8+ T cell immune responses through TLR5 stimulation in a therapeutic cancer vaccine model

Chung Truong Nguyen; Jeong-Im Sin; Hong Van Dinh Vu; Kwangjoon Jeong; Kyoung Oh Cho; Satoshi Uematsu; Shizuo Akira; Shee Eun Lee; Joon Haeng Rhee

Tumor antigen (TA)-specific immunotherapy is an emerging approach for cancer treatment. Potent adjuvants are prerequisites to the immunotherapy for overcoming the low immunogenicity of TAs. We previously demonstrated that a bacterial flagellin, Vibrio vulnificus FlaB, has potent adjuvant activity in various vaccination models. In this study, we investigated whether the FlaB protein could be a potent adjuvant for a human papillomavirus 16 E6 and E7 (E6/E7) peptide-based anticancer immunotherapy. We used an E6/E7-expressing TC-1 carcinoma implantation animal model and tested TA-specific immunomodulation by FlaB. We co-administered the E6/E7 peptide either with or without FlaB into TC-1 tumor-bearing mice and then analyzed the antitumor activity of the peptide. FlaB significantly potentiated specific antitumor immune responses elicited by the peptide immunization, as evidenced by retarded in vivo tumor growth and significantly prolonged survival. We noticed that TC-1 cells do not express Toll-like receptor 5 (TLR5) on their surface and the TLR5 signaling pathway in TC-1 cells was not responsible for the antitumor effect of FlaB. FlaB potentiated the CTL activity and Ag-specific IFN-γ production of CD8(+) T cells from the draining lymph node and spleen. In addition, this antitumor activity was abrogated following the in vivo depletion of CD8(+) T cells and in TLR5 knockout (KO) or MyD88 KO mice. These results suggest that flagellin could enhance TA-specific CD8(+) CTL immune responses through TLR5 stimulation in cancer immunotherapy.


PLOS ONE | 2014

Anti-Tumoral Effect of the Mitochondrial Target Domain of Noxa Delivered by an Engineered Salmonella typhimurium

Jae-Ho Jeong; Kwangsoo Kim; Daejin Lim; Kwangjoon Jeong; Yeongjin Hong; Vu H. Nguyen; Tae-Hyoung Kim; Sangryeol Ryu; Jeong-A Lim; Jae Il Kim; Geun-Joong Kim; Sun Chang Kim; Jung-Joon Min; Hyon E. Choy

Bacterial cancer therapy relies on the fact that several bacterial species are capable of targeting tumor tissue and that bacteria can be genetically engineered to selectively deliver therapeutic proteins of interest to the targeted tumors. However, the challenge of bacterial cancer therapy is the release of the therapeutic proteins from the bacteria and entry of the proteins into tumor cells. This study employed an attenuated Salmonella typhimurium to selectively deliver the mitochondrial targeting domain of Noxa (MTD) as a potential therapeutic cargo protein, and examined its anti-cancer effect. To release MTD from the bacteria, a novel bacterial lysis system of phage origin was deployed. To facilitate the entry of MTD into the tumor cells, the MTD was fused to DS4.3, a novel cell-penetrating peptide (CPP) derived from a voltage-gated potassium channel (Kv2.1). The gene encoding DS4.3-MTD and the phage lysis genes were placed under the control of PBAD, a promoter activated by L-arabinose. We demonstrated that DS4.3-MTD chimeric molecules expressed by the Salmonellae were anti-tumoral in cultured tumor cells and in mice with CT26 colon carcinoma.


Infection and Immunity | 2014

Contribution of Six Flagellin Genes to the Flagellum Biogenesis of Vibrio vulnificus and In Vivo Invasion

Soo Young Kim; Xuan Tran Thi Thanh; Kwangjoon Jeong; Seong Bin Kim; Sang O Pan; Che Hun Jung; Shee Eun Lee; Joon Haeng Rhee

ABSTRACT Vibrio vulnificus is a halophilic pathogenic bacterium that is motile due to the presence of a single polar flagellum. V. vulnificus possesses a total of six flagellin genes organized into two loci (flaFBA and flaCDE). We proved that all six of the flagellin genes were transcribed, whereas only five (FlaA, -B, -C, -D, and -F) of the six flagellin proteins were detected. To understand roles of the six V. vulnificus flagellins in motility and virulence, mutants with single and multiple flagellin deletions were constructed. Mutations in flaB or flaC or the flaCDE locus resulted in a significant decrease in motility, adhesion, and cytotoxicity, whereas single mutations in the other flagellin genes or the flaFBA locus showed little or no effect. The motility was completely abolished only in the mutant lacking all six flagellin genes (flaFBA flaCDE). Surprisingly, a double mutation of flaB and flaD, a gene sharing 99% identity with the flaB at the amino acid level, resulted in the largest decrease in motility, adhesion, and cytotoxicity except for the mutant in which all six genes were deleted (the hexa mutant). Additionally, the 50% lethal doses (LD50s) of the flaB flaD and the flaFBA flaCDE mutants increased 23- and 91-fold in a mouse model, respectively, and the in vitro and in vivo invasiveness of the mutants was significantly decreased compared to that of the wild type. Taken together, the multiple flagellin subunits differentially contribute to the flagellum biogenesis and the pathogenesis of V. vulnificus, and among the six flagellin genes, flaB, flaD, and flaC were the most influential components.


OncoImmunology | 2016

Flagellin is a strong vaginal adjuvant of a therapeutic vaccine for genital cancer

Shee Eun Lee; Vivek Verma; Youn Suhk Lee; Tra-My Nu Duong; Kwangjoon Jeong; Saji Uthaman; Young Chul Sung; Jae-Tae Lee; In-Kyu Park; Jung-Joon Min; Joon Haeng Rhee

ABSTRACT Cervical cancer is a high-incidence female cancer most commonly caused by human papilloma virus (HPV) infection of the genital mucosa. Immunotherapy targeting HPV-derived tumor antigens (TAs) has been widely studied in animal models and in patients. Because the female genital tract is a portal for the entry of HPV and a highly compartmentalized system, the development of topical vaginal immunotherapy in an orthotopic cancer model would provide an ideal therapeutic. Thus, we examined whether flagellin, a potent mucosal immunomodulator, could be used as an adjuvant for a topical therapeutic vaccine for female genital cancer. Intravaginal (IVAG) co-administration of the E6/E7 peptides with flagellin resulted in tumor suppression and long-term survival of tumor-bearing mice. In contrast to IVAG vaccination, intranasal (IN) or subcutaneous (SC) immunization did not induce significant tumor suppression in the same model. The vaginal adjuvant effect of the flagellin was completely abolished in Toll-like receptor-5 (TLR5) knock-out mice. IVAG immunization with the E6/E7 peptides plus flagellin induced the accumulation of CD4+ and CD8+ cells and the expression of T cell activation-related genes in the draining genital lymph nodes (gLNs). The co-administered flagellin elicited antigen-specific IFNγ production in the gLNs and spleen. The intravaginally administered flagellin was found in association with CD11c+ cells in the gLNs. Moreover, after immunization with a flagellin and the E6/E7 peptides, the TLR5 expression in gLN cells was significantly upregulated. These results suggest that flagellin serves as a potent vaginal adjuvant for a therapeutic peptide cancer vaccine through the activation of TLR5 signaling.


Human Vaccines & Immunotherapeutics | 2018

More robust gut immune responses induced by combining intranasal and sublingual routes for prime-boost immunization

Hye Suk Hwang; Sao Puth; Wenzhi Tan; Vivek Verma; Kwangjoon Jeong; Shee Eun Lee; Joon Haeng Rhee

ABSTRACT Norovirus causes acute and debilitating gastroenteritis, characterized by vomiting and diarrhea. We recently reported a recombinant GII. 4 P domain particle (Pd) vaccine adjuvanted with a flagellin, Vibrio vulnificus FlaB, effectively promoting both humoral and cell-mediated immune responses. In the previous study, we found that sublingual (SL) immunization induced higher fecal secretory IgA (SIgA) responses while intranasal (IN) route provided higher amplitude of humoral and cellular immune responses in the systemic compartment. We hypothesized that the combination of IN and SL routes should induce more potent and sustained SIgA responses in the gut. In this study, we have tried combinatorial prime-boost immunization employing both IN and SL routes. The IN priming and SL boosting with the Pd+FlaB vaccine enhanced highest SIgA responses in feces, accompanying increased Pd-specific memory B cells and plasma cells in spleen and bone marrow, respectively. Notably, the strongest long-lasting SIgA response in feces was induced by combined IN prime and SL boost vaccination, which was sustained for more than 3 months. Significantly enhanced gut-homing B cell and follicular helper T cell responses in mesenteric lymph nodes (mLNs) were observed in the IN prime and SL boost combination. IN priming was a requisite for the robust induction of Pd-specific IFNγ, IL-2, IL-4 and IL-5 cytokine responses in the systemic immune compartment. Collectively, the IN prime and SL boost combination was the best option for inducing balanced long-lasting immune responses against the norovirus antigen in both enteric and systemic compartments. These results suggest that immune responses in specific mucosal compartments may be programmed by employing different prime-boost immunization routes.


Human Vaccines & Immunotherapeutics | 2017

Mucosal immunization with a flagellin-adjuvanted Hgp44 vaccine enhances protective immune responses in a murine Porphyromonas gingivalis infection model.

Sao Puth; Mi Jin Park; Hye Hwa Lee; Youn Suhk Lee; Kwangjoon Jeong; In-Chol Kang; Jeong Tae Koh; Byounggon Moon; Sang Chul Park; Joon Haeng Rhee; Shee Eun Lee

ABSTRACT Chronic periodontitis is caused by interactions between the oral polymicrobial community and host factors. Periodontal diseases are associated with dysbiotic shift in oral microbiota. Vaccination against periodontopathic bacteria could be a fundamental therapeutic to modulate polymicrobial biofilms. Because oral cavity is the site of periodontopathic bacterial colonization, mucosal vaccines should provide better protection than vaccines administered systemically. We previously reported that bacterial flagellin is an excellent mucosal adjuvant. In this study, we investigated whether mucosal immunization with a flagellin-adjuvanted polypeptide vaccine induces protective immune responses using a Porphyromonas gingivalis infection model. We used the Hgp44 domain polypeptide of Arg-gingipain A (RgpA) as a mucosal antigen. Intranasal (IN) immunization induced a significantly higher Hgp44-specific IgG titer in the serum of mice than sublingual (SL) administration. The co-administration of flagellin potentiated serum IgG responses for both the IN and SL vaccinations. On the other hand, the anti-Hgp44-specific IgA titer in the saliva was comparable between IN and SL vaccinations, suggesting SL administration as more compliant vaccination route for periodontal vaccines. The co-administration of flagellin significantly potentiated the secretory IgA response in saliva also. Furthermore, mice administered a mixture of Hgp44 and flagellin via the IN and SL routes exhibited significant reductions in alveolar bone loss induced by live P. gingivalis infections. An intranasally administered Hgp44-flagellin fusion protein induced a comparable level of Hgp44-specific antibody responses to the mixture of Hgp44 and flagellin. Overall, a flagellin-adjuvanted Hgp44 antigen would serve an important component for a multivalent mucosal vaccine against polymicrobial periodontitis.


Infection and Immunity | 2016

All three TonB systems are required for Vibrio vulnificus CMCP6 tissue invasiveness by controlling flagellum expression

Tra-My Duong-Nu; Kwangjoon Jeong; Hong-Vu Nguyen; Van-Hoan Ngo; Jung-Joon Min; Shee Eun Lee; Joon Haeng Rhee


Journal of Bacteriology and Virology | 2013

Destructive Intestinal Translocation of Vibrio vulnificus Determines Successful Oral Infection

Kwangjoon Jeong; Mi Jin Park; Youn Suhk Lee; Tra My Duong Nu; Soo Young Kim; Joon Haeng Rhee; Shee Eun Lee

Collaboration


Dive into the Kwangjoon Jeong's collaboration.

Top Co-Authors

Avatar

Joon Haeng Rhee

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Shee Eun Lee

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Soo Young Kim

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youn Suhk Lee

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyon E. Choy

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Jung-Joon Min

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Vivek Verma

Chonnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge