Kwon-Sik Park
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kwon-Sik Park.
Nature Genetics | 2012
Martin Peifer; Lynnette Fernandez-Cuesta; Martin L. Sos; Julie George; Danila Seidel; Lawryn H. Kasper; Dennis Plenker; Frauke Leenders; Ruping Sun; Thomas Zander; Roopika Menon; Mirjam Koker; Ilona Dahmen; Christian Müller; Vincenzo Di Cerbo; Hans Ulrich Schildhaus; Janine Altmüller; Ingelore Baessmann; Christian Becker; Bram De Wilde; Jo Vandesompele; Diana Böhm; Sascha Ansén; Franziska Gabler; Ines Wilkening; Stefanie Heynck; Johannes M. Heuckmann; Xin Lu; Scott L. Carter; Kristian Cibulskis
Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis. We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4 ± 1 protein-changing mutations per million base pairs. Therefore, we conducted integrated analyses of the various data sets to identify pathogenetically relevant mutated genes. In all cases, we found evidence for inactivation of TP53 and RB1 and identified recurrent mutations in the CREBBP, EP300 and MLL genes that encode histone modifiers. Furthermore, we observed mutations in PTEN, SLIT2 and EPHA7, as well as focal amplifications of the FGFR1 tyrosine kinase gene. Finally, we detected many of the alterations found in humans in SCLC tumors from Tp53 and Rb1 double knockout mice. Our study implicates histone modification as a major feature of SCLC, reveals potentially therapeutically tractable genomic alterations and provides a generalizable framework for the identification of biologically relevant genes in the context of high mutational background.
Nature | 2015
Julie George; Jing Shan Lim; Se Jin Jang; Yupeng Cun; Luka Ozretić; Gu Kong; Frauke Leenders; Xin Lu; Lynnette Fernandez-Cuesta; Graziella Bosco; Christian Müller; Ilona Dahmen; Nadine S. Jahchan; Kwon-Sik Park; Dian Yang; Anthony N. Karnezis; Dedeepya Vaka; Angela Torres; Maia Segura Wang; Jan O. Korbel; Roopika Menon; Sung-Min Chun; Deokhoon Kim; Matt Wilkerson; Neil Hayes; David Engelmann; Brigitte M. Pützer; Marc Bos; Sebastian Michels; Ignacija Vlasic
We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.
Nature Medicine | 2011
Kwon-Sik Park; Luciano G. Martelotto; Martin Peifer; Martin L. Sos; Anthony N. Karnezis; Moe R. Mahjoub; Katie Bernard; Jamie F. Conklin; Anette Szczepny; Jing Yuan; Ribo Guo; Beatrice Ospina; Jeanette Falzon; Samara Bennett; Tracey J. Brown; Ana Markovic; Wendy Devereux; Cory A. Ocasio; James K. Chen; Tim Stearns; Roman K. Thomas; Marion Dorsch; Silvia Buonamici; D. Neil Watkins; Craig D. Peacock; Julien Sage
Small-cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer for which there is no effective treatment. Using a mouse model in which deletion of Rb1 and Trp53 in the lung epithelium of adult mice induces SCLC, we found that the Hedgehog signaling pathway is activated in SCLC cells independently of the lung microenvironment. Constitutive activation of the Hedgehog signaling molecule Smoothened (Smo) promoted the clonogenicity of human SCLC in vitro and the initiation and progression of mouse SCLC in vivo. Reciprocally, deletion of Smo in Rb1 and Trp53-mutant lung epithelial cells strongly suppressed SCLC initiation and progression in mice. Furthermore, pharmacological blockade of Hedgehog signaling inhibited the growth of mouse and human SCLC, most notably following chemotherapy. These findings show a crucial cell-intrinsic role for Hedgehog signaling in the development and maintenance of SCLC and identify Hedgehog pathway inhibition as a therapeutic strategy to slow the progression of disease and delay cancer recurrence in individuals with SCLC.
Cancer Cell | 2011
Ayumu Taguchi; Katerina Politi; Sharon J. Pitteri; William W. Lockwood; Vitor M. Faça; Karen S. Kelly-Spratt; Chee Hong Wong; Qing Zhang; Alice Chin; Kwon-Sik Park; Gary E. Goodman; Adi F. Gazdar; Julien Sage; Daniela M. Dinulescu; Raju Kucherlapati; Ronald A. DePinho; Christopher J. Kemp; Harold E. Varmus; Samir M. Hanash
We investigated the potential of in-depth quantitative proteomics to reveal plasma protein signatures that reflect lung tumor biology. We compared plasma protein profiles of four mouse models of lung cancer with profiles of models of pancreatic, ovarian, colon, prostate, and breast cancer and two models of inflammation. A protein signature for Titf1/Nkx2-1, a known lineage-survival oncogene in lung cancer, was found in plasmas of mouse models of lung adenocarcinoma. An EGFR signature was found in plasma of an EGFR mutant model, and a distinct plasma signature related to neuroendocrine development was uncovered in the small-cell lung cancer model. We demonstrate relevance to human lung cancer of the protein signatures identified on the basis of mouse models.
Cancer Research | 2010
Bethany E. Schaffer; Kwon-Sik Park; Yiu G; Jamie F. Conklin; Chenwei Lin; Deborah L. Burkhart; Anthony N. Karnezis; Sweet-Cordero Ea; Julien Sage
Small-cell lung carcinoma (SCLC) is a neuroendocrine subtype of lung cancer. Although SCLC patients often initially respond to therapy, tumors nearly always recur, resulting in a 5-year survival rate of less than 10%. A mouse model has been developed based on the fact that the RB and p53 tumor suppressor genes are mutated in more than 90% of human SCLCs. Emerging evidence in patients and mouse models suggests that p130, a gene related to RB, may act as a tumor suppressor in SCLC cells. To test this idea, we used conditional mutant mice to delete p130 in combination with Rb and p53 in adult lung epithelial cells. We found that loss of p130 resulted in increased proliferation and significant acceleration of SCLC development in this triple-knockout mouse model. The histopathologic features of the triple-mutant mouse tumors closely resembled that of human SCLC. Genome-wide expression profiling experiments further showed that Rb/p53/p130-mutant mouse tumors were similar to human SCLC. These findings indicate that p130 plays a key tumor suppressor role in SCLC. Rb/p53/p130-mutant mice provide a novel preclinical mouse model to identify novel therapeutic targets against SCLC.
Cell Cycle | 2011
Kwon-Sik Park; Mei-Chih Liang; David M. Raiser; Raffaella Zamponi; Rebecca R. Roach; Stephen Curtis; Zandra E. Walton; Bethany E. Schaffer; Caitlin M. Roake; Anne-Flore Zmoos; Christina Kriegel; Kwok-Kin Wong; Julien Sage; Carla F. Kim
Small cell lung carcinoma (SCLC) is a neuroendocrine subtype of lung cancer that affects more than 200,000 people worldwide every year with a very high mortality rate. Here, we used a mouse genetics approach to characterize the cell of origin for SCLC; in this mouse model, tumors are initiated by the deletion of the Rb and p53 tumor suppressor genes in the lung epithelium of adult mice. We found that mouse SCLCs often arise in the lung epithelium, where neuroendocrine cells are located, and that the majority of early lesions were composed of proliferating neuroendocrine cells. In addition, mice in which Rb and p53 are deleted in a variety of non-neuroendocrine lung epithelial cells did not develop SCLC. These data indicate that SCLC likely arises from neuroendocrine cells in the lung.
Oncogene | 2009
Victoria M. Ho; Bethany E. Schaffer; Anthony N. Karnezis; Kwon-Sik Park; Julien Sage
Mutations of the retinoblastoma tumor suppressor gene RB are frequently observed in human cancers, but rarely in non-small cell lung carcinomas (NSCLCs). Emerging evidence also suggests that the RB-related gene p130 is inactivated in a subset of human NSCLCs. To directly test the specific tumor suppressor roles of RB and p130 in NSCLC, we crossed Rb and p130 conditional mutant mice to mice carrying a conditional oncogenic K-Ras allele. In this model, controlled oncogenic K-Ras activation leads to the development of adenocarcinoma, a major subtype of NSCLC. We found that loss of p130 accelerated the death of mice, providing direct evidence in vivo that p130 is a tumor suppressor gene, albeit a weak one in this context. Loss of Rb increased the efficiency of lung cancer initiation and resulted in the development of high-grade adenocarcinomas and rapid death. Thus, despite the low frequency of RB mutations in human NSCLCs and reports that K-Ras activation and loss of RB function are rarely found in the same human tumors, loss of Rb clearly cooperates with activation of oncogenic K-Ras in lung adenocarcinoma development in mice.
Genes & Development | 2016
Dong-Wook Kim; Nan Wu; Young Chul Kim; Pei Feng Cheng; Ryan Basom; Dongkyoon Kim; Colin T. Dunn; Anastasia Y. Lee; Kee-Beom Kim; Chang Sup Lee; Andrew Singh; Adi F. Gazdar; Chris R. Harris; Robert N. Eisenman; Kwon-Sik Park; David MacPherson
Small cell lung cancer (SCLC) is a devastating neuroendocrine carcinoma. MYCL (L-Myc) is frequently amplified in human SCLC, but its roles in SCLC progression are poorly understood. We isolated preneoplastic neuroendocrine cells from a mouse model of SCLC and found that ectopic expression of L-Myc, c-Myc, or N-Myc conferred tumor-forming capacity. We focused on L-Myc, which promoted pre-rRNA synthesis and transcriptional programs associated with ribosomal biogenesis. Deletion of Mycl in two genetically engineered models of SCLC resulted in strong suppression of SCLC. The high degree of suppression suggested that L-Myc may constitute a therapeutic target for a broad subset of SCLC. We then used an RNA polymerase I inhibitor to target rRNA synthesis in an autochthonous Rb/p53-deleted mouse SCLC model and found significant tumor inhibition. These data reveal that activation of RNA polymerase I by L-Myc and other MYC family proteins provides an axis of vulnerability for this recalcitrant cancer.
Cancer Discovery | 2018
Dian Yang; Sarah K. Denny; Peyton Greenside; Andrea C. Chaikovsky; Jennifer J. Brady; Youcef Ouadah; Jeffrey M. Granja; Nadine S. Jahchan; Jing Shan Lim; Shirley Kwok; Christina S. Kong; Anna Sophie Berghoff; Anna Schmitt; H. Christian Reinhardt; Kwon-Sik Park; Matthias Preusser; Anshul Kundaje; William J. Greenleaf; Julien Sage; Monte M. Winslow
The extent to which early events shape tumor evolution is largely uncharacterized, even though a better understanding of these early events may help identify key vulnerabilities in advanced tumors. Here, using genetically defined mouse models of small cell lung cancer (SCLC), we uncovered distinct metastatic programs attributable to the cell type of origin. In one model, tumors gain metastatic ability through amplification of the transcription factor NFIB and a widespread increase in chromatin accessibility, whereas in the other model, tumors become metastatic in the absence of NFIB-driven chromatin alterations. Gene-expression and chromatin accessibility analyses identify distinct mechanisms as well as markers predictive of metastatic progression in both groups. Underlying the difference between the two programs was the cell type of origin of the tumors, with NFIB-independent metastases arising from mature neuroendocrine cells. Our findings underscore the importance of the identity of cell type of origin in influencing tumor evolution and metastatic mechanisms.Significance: We show that SCLC can arise from different cell types of origin, which profoundly influences the eventual genetic and epigenetic changes that enable metastatic progression. Understanding intertumoral heterogeneity in SCLC, and across cancer types, may illuminate mechanisms of tumor progression and uncover how the cell type of origin affects tumor evolution. Cancer Discov; 8(10); 1316-31. ©2018 AACR. See related commentary by Pozo et al., p. 1216 This article is highlighted in the In This Issue feature, p. 1195.
Translational lung cancer research | 2018
Dong-Wook Kim; Keun-Cheol Kim; Kee-Beom Kim; Colin T. Dunn; Kwon-Sik Park
The discovery of recurrent alterations in genes encoding transcription regulators and chromatin modifiers is one of the most important recent developments in the study of the small cell lung cancer (SCLC) genome. With advances in models and analytical methods, the field of SCLC biology has seen remarkable progress in understanding the deregulated transcription networks linked to the tumor development and malignant progression. This review will discuss recent discoveries on the roles of RB and P53 family of tumor suppressors and MYC family of oncogenes in tumor initiation and development. It will also describe the roles of lineage-specific factors in neuroendocrine (NE) cell differentiation and homeostasis and the roles of epigenetic alterations driven by changes in NFIB and chromatin modifiers in malignant progression and chemoresistance. These recent findings have led to a model of transcriptional network in which multiple pathways converge on regulatory regions of crucial genes linked to tumor development. Validation of this model and characterization of target genes will provide critical insights into the biology of SCLC and novel strategies for tumor intervention.