Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyle E. Landgraf is active.

Publication


Featured researches published by Kyle E. Landgraf.


Brain Behavior and Immunity | 2010

Evidence that opioids may have toll-like receptor 4 and MD-2 effects

Mark R. Hutchinson; Yingning Zhang; Mitesh Shridhar; John H. Evans; Madison M. Buchanan; Tina X. Zhao; Peter F. Slivka; Benjamen D. Coats; Niloofar Rezvani; Julie Wieseler; Travis S. Hughes; Kyle E. Landgraf; Stefanie Chan; Stephanie Fong; Simon Phipps; Joseph J. Falke; Leslie A. Leinwand; Steven F. Maier; Hang Yin; Kenner C. Rice; Linda R. Watkins

Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll-like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically-employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling.


Neuroscience | 2010

Evidence that tricyclic small molecules may possess toll-like receptor and myeloid differentiation protein 2 activity

Mark R. Hutchinson; Lisa C. Loram; Yingning Zhang; Mitesh Shridhar; Niloofar Rezvani; Debra Berkelhammer; Simon Phipps; Paul S. Foster; Kyle E. Landgraf; Joseph J. Falke; Kenner C. Rice; Steven F. Maier; Hang Yin; Linda R. Watkins

Opioids have been discovered to have Toll-like receptor (TLR) activity, beyond actions at classical opioid receptors. This raises the question whether other pharmacotherapies for pain control may also possess TLR activity, contributing to or opposing their clinical effects. We document that tricyclics can alter TLR4 and TLR2 signaling. In silico simulations revealed that several tricyclics docked to the same binding pocket on the TLR accessory protein, myeloid differentiation protein 2 (MD-2), as do opioids. Eight tricyclics were tested for effects on TLR4 signaling in HEK293 cells over-expressing human TLR4. Six exhibited mild (desipramine), moderate (mianserin, cyclobenzaprine, imiprimine, ketotifen) or strong (amitriptyline) TLR4 inhibition, and no TLR4 activation. In contrast, carbamazepine and oxcarbazepine exhibited mild and strong TLR4 activation, respectively, and no TLR4 inhibition. Amitriptyline but not carbamazepine also significantly inhibited TLR2 signaling in a comparable cell line. Live imaging of TLR4 activation in RAW264.7 cells and TLR4-dependent interleukin-1 release from BV-2 microglia revealed that amitriptyline blocked TLR4 signaling. Lastly, tricyclics with no (carbamazepine), moderate (cyclobenzeprine), and strong (amitriptyline) TLR4 inhibition were tested intrathecally (rats) and amitriptyline tested systemically in wildtype and knockout mice (TLR4 or MyD88). While tricyclics had no effect on basal pain responsivity, they potentiated morphine analgesia in rank-order with their potency as TLR4 inhibitors. This occurred in a TLR4/MyD88-dependent manner as no potentiation of morphine analgesia by amitriptyline occurred in these knockout mice. This suggests that TLR2 and TLR4 inhibition, possibly by interactions with MD2, contributes to effects of tricyclics in vivo. These studies provide converging lines of evidence that several tricyclics or their active metabolites may exert their biological actions, in part, via modulation of TLR4 and TLR2 signaling and suggest that inhibition of TLR4 and TLR2 signaling may potentially contribute to the efficacy of tricyclics in treating chronic pain and enhancing the analgesic efficacy of opioids.


Biochemistry | 2008

Molecular mechanism of an oncogenic mutation that alters membrane targeting: glu17lys modifies the pip lipid specificity of the akt1 ph domain †

Kyle E. Landgraf; Carissa Pilling; Joseph J. Falke

The protein kinase AKT1 regulates multiple signaling pathways essential for cell function. Its N-terminal PH domain (AKT1 PH) binds the rare signaling phospholipid phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)], resulting in plasma membrane targeting and phosphoactivation of AKT1 by a membrane-bound kinase. Recently, it was discovered that the Glu17Lys mutation in the AKT1 PH domain is associated with multiple human cancers. This mutation constitutively targets the AKT1 PH domain to the plasma membrane by an unknown mechanism, thereby promoting constitutive AKT1 activation and oncogenesis. To elucidate the molecular mechanism underlying constitutive plasma membrane targeting, this work compares the membrane docking reactions of the isolated wild-type and E17K AKT1 PH domains. In vitro studies reveal that the E17K mutation dramatically increases the affinity for the constitutive plasma membrane lipid PI(4,5)P(2). The resulting PI(4,5)P(2) equilibrium affinity is indistinguishable from that of the standard PI(4,5)P(2) sensor, PLCdelta1 PH domain. Kinetic studies indicate that the effects of E17K on PIP lipid binding arise largely from electrostatic modulation of the dissociation rate. Membrane targeting analysis in live cells confirms that the constitutive targeting of E17K AKT1 PH to plasma membrane, like PLCdelta1 PH, stems from PI(4,5)P(2) binding. Overall, the evidence indicates that the molecular mechanism underlying E17K oncogenesis is a broadened target lipid selectivity that allows high-affinity binding to PI(4,5)P(2). Moreover, the findings strongly implicate the native Glu17 side chain as a key element of PIP lipid specificity in the wild-type AKT1 PH domain. Other PH domains may employ an analogous anionic residue to control PIP specificity.


Journal of Molecular Biology | 2010

Membrane docking geometry and target lipid stoichiometry of membrane-bound PKCα C2 domain: a combined molecular dynamics and experimental study.

Chun-Liang Lai; Kyle E. Landgraf; Gregory A. Voth; Joseph J. Falke

Protein kinase Cα (PKCα) possesses a conserved C2 domain (PKCα C2 domain) that acts as a Ca(2+)-regulated membrane targeting element. Upon activation by Ca(2+), the PKCα C2 domain directs the kinase protein to the plasma membrane, thereby stimulating an array of cellular pathways. At sufficiently high Ca(2+) concentrations, binding of the C2 domain to the target lipid phosphatidylserine (PS) is sufficient to drive membrane association; however, at typical physiological Ca(2+) concentrations, binding to both PS and phosphoinositidyl-4,5-bisphosphate (PIP(2)) is required for specific plasma membrane targeting. Recent EPR studies have revealed the membrane docking geometries of the PKCα C2 domain docked to (i) PS alone and (ii) both PS and PIP(2) simultaneously. These two EPR docking geometries exhibit significantly different tilt angles relative to the plane of the membrane, presumably induced by the large size of the PIP(2) headgroup. The present study utilizes the two EPR docking geometries as starting points for molecular dynamics simulations that investigate atomic features of the protein-membrane interaction. The simulations yield approximately the same PIP(2)-triggered change in tilt angle observed by EPR. Moreover, the simulations predict a PIP(2):C2 stoichiometry approaching 2:1 at a high PIP(2) mole density. Direct binding measurements titrating the C2 domain with PIP(2) in lipid bilayers yield a 1:1 stoichiometry at moderate mole densities and a saturating 2:1 stoichiometry at high PIP(2) mole densities. Thus, the experiment confirms the target lipid stoichiometry predicted by EPR-guided molecular dynamics simulations. Potential biological implications of the observed docking geometries and PIP(2) stoichiometries are discussed.


Biochemistry | 2008

Effect of PIP2 Binding on the Membrane Docking Geometry of PKCα C2 Domain: An EPR Site-Directed Spin-Labeling and Relaxation Study†

Kyle E. Landgraf; Nathan J. Malmberg; Joseph J. Falke

Protein kinase C isoform alpha (PKCalpha) is a ubiquitous, conventional PKC enzyme that possesses a conserved C2 domain. Upon activation by cytoplasmic Ca (2+) ions, the C2 domain specifically binds to the plasma membrane inner leaflet where it recognizes the target lipids phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP 2). The membrane penetration depth and docking angle of the membrane-associated C2 domain is not well understood. The present study employs EPR site-directed spin labeling and relaxation methods to generate a medium-resolution model of the PKCalpha C2 domain docked to a membrane of lipid composition similar to the plasma membrane inner leaflet. The approach measures EPR depth parameters for 10 function-retaining spin labels coupled to the C2 domain, and for spin labels coupled to depth calibration molecules. The resulting depth parameters, together with the known structure of the free C2 domain, provide a sufficient number of constraints to define two membrane docking geometries for C2 domain bound to physiological membranes lacking or containing PIP 2, respectively. In both the absence and presence of PIP 2, the two bound Ca (2+) ions of the C2 domain lie near the anionic phosphate plane in the headgroup region, consistent with the known ability of the Ca (2+) and membrane-binding loops (CMBLs) to bind the headgroup of the PS target lipid. In the absence of PIP 2, the polybasic lipid binding site on the beta3-beta4 hairpin is occupied with PS, but in the presence of PIP 2 this larger, higher affinity target lipid competitively displaces PS and causes the long axis of the domain to tilt 40 +/- 10 degrees toward the bilayer normal. The ability of the beta3-beta4 hairpin site to bind PS as well as PIP 2 extends the lifetime of the membrane-docked state and is predicted to enhance the kinase turnover number of PKCalpha during a single membrane docking event. In principle, PIP 2-induced tilting of the C2 domain could modulate the activity of membrane-docked PKCalpha as it diffuses between membrane regions with different local PS and PIP 2 concentrations. Finally, the results demonstrate that EPR relaxation methods are sufficiently sensitive to detect signaling-induced changes in the membrane docking geometries of peripheral membrane proteins.


Biochemistry | 2014

Single-molecule studies reveal a hidden key step in the activation mechanism of membrane-bound protein kinase C-α.

Brian P. Ziemba; Jianing Li; Kyle E. Landgraf; Jefferson D. Knight; Gregory A. Voth; Joseph J. Falke

Protein kinase C-α (PKCα) is a member of the conventional family of protein kinase C isoforms (cPKCs) that regulate diverse cellular signaling pathways, share a common activation mechanism, and are linked to multiple pathologies. The cPKC domain structure is modular, consisting of an N-terminal pseudosubstrate peptide, two inhibitory domains (C1A and C1B), a targeting domain (C2), and a kinase domain. Mature, cytoplasmic cPKCs are inactive until they are switched on by a multistep activation reaction that occurs largely on the plasma membrane surface. Often, this activation begins with a cytoplasmic Ca2+ signal that triggers C2 domain targeting to the plasma membrane where it binds phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). Subsequently, the appearance of the signaling lipid diacylglycerol (DAG) activates the membrane-bound enzyme by recruiting the inhibitory pseudosubstrate and one or both C1 domains away from the kinase domain. To further investigate this mechanism, this study has utilized single-molecule total internal reflection fluorescence microscopy (TIRFM) to quantitate the binding and lateral diffusion of full-length PKCα and fragments missing specific domain(s) on supported lipid bilayers. Lipid binding events, and events during which additional protein is inserted into the bilayer, were detected by their effects on the equilibrium bound particle density and the two-dimensional diffusion rate. In addition to the previously proposed activation steps, the findings reveal a major, undescribed, kinase-inactive intermediate. On bilayers containing PS or PS and PIP2, full-length PKCα first docks to the membrane via its C2 domain, and then its C1A domain embeds itself in the bilayer even before DAG appears. The resulting pre-DAG intermediate with membrane-bound C1A and C2 domains is the predominant state of PKCα while it awaits the DAG signal. The newly detected, membrane-embedded C1A domain of this pre-DAG intermediate confers multiple useful features, including enhanced membrane affinity and longer bound state lifetime. The findings also identify the key molecular step in kinase activation: because C1A is already membrane-embedded in the kinase off state, recruitment of C1B to the bilayer by DAG or phorbol ester is the key regulatory event that stabilizes the kinase on state. More broadly, this study illustrates the power of single-molecule methods in elucidating the activation mechanisms and hidden regulatory states of membrane-bound signaling proteins.


Biochemistry | 2011

The GRP1 PH domain, like the AKT1 PH domain, possesses a sentry glutamate residue essential for specific targeting to plasma membrane PI(3,4,5)P(3).

Carissa Pilling; Kyle E. Landgraf; Joseph J. Falke

During the appearance of the signaling lipid PI(3,4,5)P(3), an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P(3)-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P(2) and bind the rare PI(3,4,5)P(3) target lipid with sufficiently high affinity. Our previous study of the E17K mutant of the protein kinase B (AKT1) PH domain, together with evidence from Carpten et al. [Carpten, J. D., et al. (2007) Nature 448, 439-444], revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P(2), thereby playing an essential role in specific PI(3,4,5)P(3) targeting [Landgraf, K. E., et al. (2008) Biochemistry 47, 12260-12269]. The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P(3)-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P(2) affinity and constitutive plasma membrane targeting. To test this hypothesis, we investigated the E345 residue, a putative sentry glutamate, of the general receptor for phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into the GRP1 PH domain enhances PI(4,5)P(2) affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in the AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P(2) releases the E345K GRP1 PH domain into the cytoplasm, and the efficiency of this release increases when Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K [Carpten, J. D., et al. (2007) Nature 448, 439-444; Lindhurst, M. J., et al. (2011) N. Engl. J. Med. 365, 611-619]. Analysis of available PH domain structures suggests that a lone glutamate residue (or, in some cases, an aspartate) is a common, perhaps ubiquitous, feature of PI(3,4,5)P(3)-specific binding pockets that functions to lower PI(4,5)P(2) affinity.


PLOS ONE | 2012

Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study.

Huai-Chun Chen; Brian P. Ziemba; Kyle E. Landgraf; John A. Corbin; Joseph J. Falke

The second messenger lipid PIP3 (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP3-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP3 target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP3-bound GRP1 PH domain on supported lipid bilayers.


Biochemistry | 2007

Mechanism of specific membrane targeting by C2 domains: localized pools of target lipids enhance Ca2+ affinity.

John A. Corbin; John H. Evans; Kyle E. Landgraf; Joseph J. Falke


Biophysical Journal | 2009

Molecular Mechanism of an Oncogenic Mutation that Alters Membrane Targeting: Glu17Lys Modifies the PIP Lipid Specificity of AKT1 PH Domain

Kyle E. Landgraf; Carissa Pilling; Joseph J. Falke

Collaboration


Dive into the Kyle E. Landgraf's collaboration.

Top Co-Authors

Avatar

Joseph J. Falke

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Carissa Pilling

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

John A. Corbin

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Brian P. Ziemba

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hang Yin

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

John H. Evans

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Kenner C. Rice

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Linda R. Watkins

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Mitesh Shridhar

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge