Kyle J. Korshavn
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kyle J. Korshavn.
Environmental Science & Technology | 2011
Ge Yu; Amanda R. Bayer; M. M. Galloway; Kyle J. Korshavn; Charles G. Fry; Frank N. Keutsch
Reactions and interactions between glyoxal and salts in aqueous solution were studied. Glyoxal was found to react with ammonium to form imidazole, imidazole-2-carboxaldehyde, formic acid, N-glyoxal substituted imidazole, and minor products at very low concentrations. Overall reaction orders and rates for each major product were measured. Sulfate ions have a strong and specific interaction with glyoxal in aqueous solution, which shifts the hydration equilibria of glyoxal from the unhydrated carbonyl form to the hydrated form. This ion-specific effect contributes to the observed enhancement of the effective Henrys law coefficient for glyoxal in sulfate-containing solutions. The results of UV-vis absorption and NMR spectroscopy studies of solutions of glyoxal with ammonium, methylamine, and dimethylamine salts reveal that light absorbing compounds require the formation of nitrogen containing molecules. These findings have implications on the role of glyoxal in the atmosphere, both in models of the contribution of glyoxal to form secondary organic aerosol (SOA), the role of nitrogen containing species for aerosol optical properties and in predictions of the behavior of other carbonyls or dicarbonyls in the atmosphere.
Journal of Biological Chemistry | 2017
Kyle J. Korshavn; Cristina Satriano; Yuxi Lin; Rongchun Zhang; Mark E. Dulchavsky; Anirban Bhunia; Magdalena I. Ivanova; Young Ho Lee; Carmelo La Rosa; Mi Hee Lim; Ayyalusamy Ramamoorthy
The aggregation of amyloid-β (Aβ) on lipid bilayers has been implicated as a mechanism by which Aβ exerts its toxicity in Alzheimers disease (AD). Lipid bilayer thinning has been observed during both oxidative stress and protein aggregation in AD, but whether these pathological modifications of the bilayer correlate with Aβ misfolding is unclear. Here, we studied peptide-lipid interactions in synthetic bilayers of the short-chain lipid dilauroyl phosphatidylcholine (DLPC) as a simplified model for diseased bilayers to determine their impact on Aβ aggregate, protofibril, and fibril formation. Aβ aggregation and fibril formation in membranes composed of dioleoyl phosphatidylcholine (DOPC) or 1- palmitoyl-2-oleoyl phosphatidylcholine mimicking normal bilayers served as controls. Differences in aggregate formation and stability were monitored by a combination of thioflavin-T fluorescence, circular dichroism, atomic force microscopy, transmission electron microscopy, and NMR. Despite the ability of all three lipid bilayers to catalyze aggregation, DLPC accelerates aggregation at much lower concentrations and prevents the fibrillation of Aβ at low micromolar concentrations. DLPC stabilized globular, membrane-associated oligomers, which could disrupt the bilayer integrity. DLPC bilayers also remodeled preformed amyloid fibrils into a pseudo-unfolded, molten globule state, which resembled on-pathway, protofibrillar aggregates. Whereas the stabilized, membrane-associated oligomers were found to be nontoxic, the remodeled species displayed toxicity similar to that of conventionally prepared aggregates. These results provide mechanistic insights into the roles that pathologically thin bilayers may play in Aβ aggregation on neuronal bilayers, and pathological lipid oxidation may contribute to Aβ misfolding.
Chemical Society Reviews | 2014
Hyuck Jin Lee; Kyle J. Korshavn; Akiko Kochi; Jeffrey S. Derrick; Mi Hee Lim
Cholesterol and metal ions have been suggested to be associated with the onset and progression of Alzheimers disease (AD). Moreover, recent findings have demonstrated a potential interconnection between these two factors. For example, (a) cholesterol has been shown to be misregulated in AD-afflicted brains, and the aberrant activity of proteins (particularly, apolipoprotein E (ApoE) and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGR)) has been linked to cholesterol-related AD exacerbation; (b) dyshomeostasis of metal ions associated with misfolded proteins (i.e., amyloid-β (Aβ) aggregates) found in the brains of AD patients is shown to promote oxidative stress leading to the malfunction of multiple proteins, including cytochrome c oxidase (CcO), and Cu/Zn superoxide dismutase (SOD1); (c) metal ion misregulation has also been observed to disrupt the activity of proteins (e.g., HMGR, low-density lipoproteins (LDL)), required for cholesterol production and regulation. Herein, we briefly discuss the potential involvement of cholesterol and metal ions in AD neuropathogenesis in both individual and interrelated manners.
Journal of the American Chemical Society | 2015
Jeffrey S. Derrick; Richard A. Kerr; Younwoo Nam; Shin Bi Oh; Hyuck Jin Lee; Kaylin G. Earnest; Nayoung Suh; Kristy L. Peck; Mehmet Ozbil; Kyle J. Korshavn; Ayyalusamy Ramamoorthy; Rajeev Prabhakar; Edward J. Merino; Jason Shearer; Joo Yong Lee; Brandon T. Ruotolo; Mi Hee Lim
Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. Herein, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl-p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-β (Aβ) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generates ligand-peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimers disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aβ forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Overall, our in vitro and in vivo studies of DMPD toward Aβ with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.
eLife | 2017
Diana C. Rodriguez Camargo; Kyle J. Korshavn; Alexander Jussupow; Kolio Raltchev; David Goricanec; Markus Fleisch; Riddhiman Sarkar; Kai Xue; Michaela Aichler; Gabriele Mettenleiter; Axel Walch; Carlo Camilloni; Franz Hagn; Bernd Reif; Ayyalusamy Ramamoorthy
Membrane-assisted amyloid formation is implicated in human diseases, and many of the aggregating species accelerate amyloid formation and induce cell death. While structures of membrane-associated intermediates would provide tremendous insights into the pathology and aid in the design of compounds to potentially treat the diseases, it has not been feasible to overcome the challenges posed by the cell membrane. Here, we use NMR experimental constraints to solve the structure of a type-2 diabetes related human islet amyloid polypeptide intermediate stabilized in nanodiscs. ROSETTA and MD simulations resulted in a unique β-strand structure distinct from the conventional amyloid β-hairpin and revealed that the nucleating NFGAIL region remains flexible and accessible within this isolated intermediate, suggesting a mechanism by which membrane-associated aggregation may be propagated. The ability of nanodiscs to trap amyloid intermediates as demonstrated could become one of the most powerful approaches to dissect the complicated misfolding pathways of protein aggregation.
Scientific Reports | 2016
Kyle J. Korshavn; Milim Jang; Yeon Ju Kwak; Akiko Kochi; Silvia Vertuani; Anirban Bhunia; Stefano Manfredini; Ayyalusamy Ramamoorthy; Mi Hee Lim
Both amyloid-β (Aβ) and transition metal ions are shown to be involved in the pathogenesis of Alzheimer’s disease (AD), though the importance of their interactions remains unclear. Multifunctional molecules, which can target metal-free and metal-bound Aβ and modulate their reactivity (e.g., Aβ aggregation), have been developed as chemical tools to investigate their function in AD pathology; however, these compounds generally lack specificity or have undesirable chemical and biological properties, reducing their functionality. We have evaluated whether multiple polyphenolic glycosides and their esterified derivatives can serve as specific, multifunctional probes to better understand AD. The ability of these compounds to interact with metal ions and metal-free/-associated Aβ, and further control both metal-free and metal-induced Aβ aggregation was investigated through gel electrophoresis with Western blotting, transmission electron microscopy, UV-Vis spectroscopy, fluorescence spectroscopy, and NMR spectroscopy. We also examined the cytotoxicity of the compounds and their ability to mitigate the toxicity induced by both metal-free and metal-bound Aβ. Of the polyphenols investigated, the natural product (Verbascoside) and its esterified derivative (VPP) regulate the aggregation and cytotoxicity of metal-free and/or metal-associated Aβ to different extents. Our studies indicate Verbascoside represents a promising structure for further multifunctional tool development against both metal-free Aβ and metal-Aβ.
Chemistry: A European Journal | 2017
Juhye Kang; Shin Jung C. Lee; Jung Seung Nam; Hyuck Jin Lee; Myeong Gyun Kang; Kyle J. Korshavn; Hyun Tak Kim; Jaeheung Cho; Ayyalusamy Ramamoorthy; Hyun Woo Rhee; Tae-Hyuk Kwon; Mi Hee Lim
Aggregates of amyloidogenic peptides are involved in the pathogenesis of several degenerative disorders. Herein, an iridium(III) complex, Ir-1, is reported as a chemical tool for oxidizing amyloidogenic peptides upon photoactivation and subsequently modulating their aggregation pathways. Ir-1 was rationally designed based on multiple characteristics, including 1) photoproperties leading to excitation by low-energy radiation; 2) generation of reactive oxygen species responsible for peptide oxidation upon photoactivation under mild conditions; and 3) relatively easy incorporation of a ligand on the IrIII center for specific interactions with amyloidogenic peptides. Biochemical and biophysical investigations illuminate that the oxidation of representative amyloidogenic peptides (i.e., amyloid-β, α-synuclein, and human islet amyloid polypeptide) is promoted by light-activated Ir-1, which alters the conformations and aggregation pathways of the peptides. Additionally, their potential oxidation sites are identified as methionine, histidine, or tyrosine residues. Overall, our studies on Ir-1 demonstrate the feasibility of devising metal complexes as chemical tools suitable for elucidating the nature of amyloidogenic peptides at the molecular level, as well as controlling their aggregation.
Inorganic Chemistry | 2016
Jeffrey S. Derrick; Richard A. Kerr; Kyle J. Korshavn; Michael J. McLane; Juhye Kang; Eunju Nam; Ayyalusamy Ramamoorthy; Brandon T. Ruotolo; Mi Hee Lim
The complex and multifaceted pathology of Alzheimers disease (AD) continues to present a formidable challenge to the establishment of long-term treatment strategies. Multifunctional compounds able to modulate the reactivities of various pathological features, such as amyloid-β (Aβ) aggregation, metal ion dyshomeostasis, and oxidative stress, have emerged as a useful tactic. Recently, an incorporation approach to the rational design of multipurpose small molecules has been validated through the production of a multifunctional ligand (ML) as a potential chemical tool for AD. In order to further the development of more diverse and improved multifunctional reagents, essential pharmacophores must be identified. Herein, we report a series of aminoquinoline derivatives (AQ1-4, AQP1-4, and AQDA1-3) based on MLs framework, prepared to gain a structure-reactivity understanding of MLs multifunctionality in addition to tuning its metal binding affinity. Our structure-reactivity investigations have implicated the dimethylamino group as a key component for supplying the antiamyloidogenic characteristics of ML in both the absence and presence of metal ions. Two-dimensional NMR studies indicate that structural variations of ML could tune its interaction sites along the Aβ sequence. In addition, mass spectrometric analyses suggest that the ability of our aminoquinoline derivatives to regulate metal-induced Aβ aggregation may be influenced by their metal binding properties. Moreover, structural modifications to ML were also observed to noticeably change its metal binding affinities and metal-to-ligand stoichiometries that were shown to be linked to their antiamyloidogenic and antioxidant activities. Overall, our studies provide new insights into rational design strategies for multifunctional ligands directed at regulating metal ions, Aβ, and oxidative stress in AD and could advance the development of improved next-generation multifunctional reagents.
Inorganic chemistry frontiers | 2016
Hyuck Jin Lee; Richard A. Kerr; Kyle J. Korshavn; Jeeyeon Lee; Juhye Kang; Ayyalusamy Ramamoorthy; Brandon T. Ruotolo; Mi Hee Lim
Amyloid-β (Aβ) and metal ions are suggested to be involved in the pathogenesis of Alzheimers disease (AD). Cu(II) and Zn(II) can interact with Aβ and facilitate peptide aggregation producing toxic oligomeric peptide species. Additionally, redox-active metal-bound Aβ is shown to generate reactive oxygen species (ROS). Although the interaction of metal ions with Aβ and the reactivity of metal-associated Aβ (metal–Aβ) are indicated, the relationship between metal–Aβ and AD etiology is still unclear. Some naturally occurring flavonoids capable of redirecting metal–Aβ peptides into nontoxic, off-pathway Aβ aggregates have been presented as valuable tools for elucidating the role of metal–Aβ in AD. The structural moieties of the flavonoids responsible for their reactivity toward metal–Aβ are not identified, however. To determine a structure–interaction–reactivity relationship between flavonoids and metal-free Aβ or metal–Aβ, four flavonoids (morin, quercetin, galangin, and luteolin) were rationally selected based on structural variations (i.e., number and position of hydroxyl groups). These four flavonoids could noticeably modulate metal–Aβ aggregation over metal-free analogue to different extents. Moreover, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) studies reveal that the direct interactions of the flavonoids with metal-free and/or metal-bound Aβ are distinct. Overall, our studies demonstrate that alternation of the hydroxyl groups on the B and C rings of flavonoids (structure) could differentiate their metal/metal-free Aβ/metal–Aβ interactions (interaction) and subsequently direct their effects on metal-free Aβ and metal–Aβ aggregation in vitro and Aβ–/metal–Aβ-triggered toxicity in living cells (reactivity), suggesting a structure–interaction–reactivity relationship.
ChemMedChem | 2017
Michael W. Beck; Jeffrey S. Derrick; Jong Min Suh; Mingeun Kim; Kyle J. Korshavn; Richard A. Kerr; Woo Jong Cho; Scott D. Larsen; Brandon T. Ruotolo; Ayyalusamy Ramamoorthy; Mi Hee Lim
Chemical tools have been valuable for establishing a better understanding of the relationships between metal ion dyshomeostasis, the abnormal aggregation and accumulation of amyloid‐β (Aβ), and oxidative stress in Alzheimers disease (AD). Still, very little information is available to correlate the structures of chemical tools with specific reactivities used to uncover such relationships. Recently, slight structural variations to the framework of a chemical tool were found to drastically determine the tools reactivities toward multiple pathological facets to various extents. Herein, we report our rational design and characterization of a structural series to illustrate the extent to which the reactivities of small molecules vary toward different targets as a result of minor structural modifications. These compounds were rationally and systematically modified based on consideration of properties, including ionization potentials and metal binding, to afford their desired reactivities with metal‐free or metal‐bound Aβ, reactive oxygen species (ROS), and free organic radicals. Our results show that although small molecules are structurally similar, they can interact with multiple factors associated with AD pathogenesis and alleviate their reactivities to different degrees. Together, our studies demonstrate the rational structure‐directed design that can be used to develop chemical tools capable of regulating individual or interrelated pathological features in AD.