Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyle M. Baumbauer is active.

Publication


Featured researches published by Kyle M. Baumbauer.


Neuroscience | 2007

BDNF and learning: Evidence that instrumental training promotes learning within the spinal cord by up-regulating BDNF expression.

Fernando Gomez-Pinilla; John R. Huie; Zhe Ying; Adam R. Ferguson; Eric D. Crown; Kyle M. Baumbauer; V. R. Edgerton; James W. Grau

We have previously shown that the spinal cord is capable of learning a sensorimotor task in the absence of supraspinal input. Given the action of brain-derived neurotrophic factor (BDNF) on hippocampal learning, the current studies examined the role of BDNF in spinal learning. BDNF is a strong synaptic facilitator and, in association with other molecular signals (e.g. cAMP-response element binding protein (CREB), calcium/calmodulin activated protein kinase II (CaMKII) and synapsin I), important for learning. Spinally transected rats given shock to one hind leg when the leg extended beyond a selected threshold exhibited a progressive increase in flexion duration that minimized shock exposure, a simple form of instrumental learning. Instrumental learning resulted in elevated mRNA levels of BDNF, CaMKII, CREB, and synapsin I in the lumbar spinal cord region. The increases in BDNF, CREB, and CaMKII were proportional to the learning performance. Prior work has shown that instrumental training facilitates learning when subjects are tested on the contralateral leg with a higher response criterion. Pretreatment with the BDNF inhibitor TrkB-IgG blocked this facilitatory effect, as did the CaMKII inhibitor AIP. Intrathecal administration of BDNF facilitated learning when subjects were tested with a high response criterion. The findings indicate that instrumental training enables learning and elevates BDNF mRNA levels within the lumbar spinal cord. BDNF is both necessary, and sufficient, to produce the enabling effect.


Frontiers in Physiology | 2012

Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

Adam R. Ferguson; J. Russell Huie; Eric D. Crown; Kyle M. Baumbauer; Michelle A. Hook; Sandra M. Garraway; Kuan H. Lee; Kevin C. Hoy; James W. Grau

Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI.


eLife | 2015

Keratinocytes can modulate and directly initiate nociceptive responses

Kyle M. Baumbauer; Jennifer J. DeBerry; Peter C. Adelman; Richard H Miller; Junichi Hachisuka; Kuan Hsien Lee; Sarah E. Ross; H. Richard Koerber; Brian M. Davis; Kathryn M. Albers

How thermal, mechanical and chemical stimuli applied to the skin are transduced into signals transmitted by peripheral neurons to the CNS is an area of intense study. Several studies indicate that transduction mechanisms are intrinsic to cutaneous neurons and that epidermal keratinocytes only modulate this transduction. Using mice expressing channelrhodopsin (ChR2) in keratinocytes we show that blue light activation of the epidermis alone can produce action potentials (APs) in multiple types of cutaneous sensory neurons including SA1, A-HTMR, CM, CH, CMC, CMH and CMHC fiber types. In loss of function studies, yellow light stimulation of keratinocytes that express halorhodopsin reduced AP generation in response to naturalistic stimuli. These findings support the idea that intrinsic sensory transduction mechanisms in epidermal keratinocytes can directly elicit AP firing in nociceptive as well as tactile sensory afferents and suggest a significantly expanded role for the epidermis in sensory processing. DOI: http://dx.doi.org/10.7554/eLife.09674.001


PLOS ONE | 2012

Glial Tumor Necrosis Factor Alpha (TNFα) Generates Metaplastic Inhibition of Spinal Learning

J. Russell Huie; Kyle M. Baumbauer; Kuan H. Lee; Jacqueline C. Bresnahan; Michael S. Beattie; Adam R. Ferguson; James W. Grau

Injury-induced overexpression of tumor necrosis factor alpha (TNFα) in the spinal cord can induce chronic neuroinflammation and excitotoxicity that ultimately undermines functional recovery. Here we investigate how TNFα might also act to upset spinal function by modulating spinal plasticity. Using a model of instrumental learning in the injured spinal cord, we have previously shown that peripheral intermittent stimulation can produce a plastic change in spinal plasticity (metaplasticity), resulting in the prolonged inhibition of spinal learning. We hypothesized that spinal metaplasticity may be mediated by TNFα. We found that intermittent stimulation increased protein levels in the spinal cord. Using intrathecal pharmacological manipulations, we showed TNFα to be both necessary and sufficient for the long-term inhibition of a spinal instrumental learning task. These effects were found to be dependent on glial production of TNFα and involved downstream alterations in calcium-permeable AMPA receptors. These findings suggest a crucial role for glial TNFα in undermining spinal learning, and demonstrate the therapeutic potential of inhibiting TNFα activity to rescue and restore adaptive spinal plasticity to the injured spinal cord. TNFα modulation represents a novel therapeutic target for improving rehabilitation after spinal cord injury.


Neuroscience | 2012

Brain-derived neurotrophic factor promotes adaptive plasticity within the spinal cord and mediates the beneficial effects of controllable stimulation

John R. Huie; Sandra M. Garraway; Kyle M. Baumbauer; Kevin C. Hoy; B.S. Beas; K.S. Montgomery; Jennifer L. Bizon; James W. Grau

Brain-derived neurotrophic factor (BDNF) has been characterized as a potent modulator of neural plasticity in both the brain and spinal cord. The present experiments use an in vivo model system to demonstrate that training with controllable stimulation increases spinal BDNF expression and engages a BDNF-dependent process that promotes adaptive plasticity. Spinally transected rats administered legshock whenever one hind limb is extended (controllable stimulation) exhibit a progressive increase in flexion duration. This simple form of response-outcome (instrumental) learning is not observed when shock is given independent of leg position (uncontrollable stimulation). Uncontrollable electrical stimulation also induces a lasting effect that impairs learning for up to 48 h. Training with controllable shock can counter the adverse consequences of uncontrollable stimulation, to both prevent and reverse the learning deficit. Here it is shown that the protective and restorative effect of instrumental training depends on BDNF. Cellular assays showed that controllable stimulation increased BDNF mRNA expression and protein within the lumbar spinal cord. These changes were associated with an increase in the BDNF receptor TrkB protein within the dorsal horn. Evidence is then presented that these changes play a functional role in vivo. Application of a BDNF inhibitor (TrkB-IgG) blocked the protective effect of instrumental training. Direct (intrathecal) application of BDNF substituted for instrumental training to block both the induction and expression of the learning deficit. Uncontrollable stimulation also induced an increase in mechanical reactivity (allodynia), and this too was prevented by BDNF. TrkB-IgG blocked the restorative effect of instrumental training and intrathecal BDNF substituted for training to reverse the deficit. Taken together, these findings outline a critical role for BDNF in mediating the beneficial effects of controllable stimulation on spinal plasticity.


Frontiers in Physiology | 2012

Impact of Behavioral Control on the Processing of Nociceptive Stimulation

James W. Grau; J. Russell Huie; Sandra M. Garraway; Michelle A. Hook; Eric D. Crown; Kyle M. Baumbauer; Kuan H. Lee; Kevin C. Hoy; Adam R. Ferguson

How nociceptive signals are processed within the spinal cord, and whether these signals lead to behavioral signs of neuropathic pain, depends upon their relation to other events and behavior. Our work shows that these relations can have a lasting effect on spinal plasticity, inducing a form of learning that alters the effect of subsequent nociceptive stimuli. The capacity of lower spinal systems to adapt, in the absence of brain input, is examined in spinally transected rats that receive a nociceptive shock to the tibialis anterior muscle of one hind leg. If shock is delivered whenever the leg is extended (controllable stimulation), it induces an increase in flexion duration that minimizes net shock exposure. This learning is not observed in subjects that receive the same amount of shock independent of leg position (uncontrollable stimulation). These two forms of stimulation have a lasting, and divergent, effect on subsequent learning: controllable stimulation enables learning whereas uncontrollable stimulation disables it (learning deficit). Uncontrollable stimulation also enhances mechanical reactivity. We review evidence that training with controllable stimulation engages a brain-derived neurotrophic factor (BDNF)-dependent process that can both prevent and reverse the consequences of uncontrollable shock. We relate these effects to changes in BDNF protein and TrkB signaling. Controllable stimulation is also shown to counter the effects of peripheral inflammation (from intradermal capsaicin). A model is proposed that assumes nociceptive input is gated at an early sensory stage. This gate is sensitive to current environmental relations (between proprioceptive and nociceptive input), allowing stimulation to be classified as controllable or uncontrollable. We further propose that the status of this gate is affected by past experience and that a history of uncontrollable stimulation will promote the development of neuropathic pain.


Frontiers in Neural Circuits | 2014

Metaplasticity and behavior: how training and inflammation affect plastic potential within the spinal cord and recovery after injury.

James W. Grau; J. Russell Huie; Kuan H. Lee; Kevin C. Hoy; Yung-Jen Huang; Joel D. Turtle; Misty M. Strain; Kyle M. Baumbauer; Rajesh M. Miranda; Michelle A. Hook; Adam R. Ferguson; Sandra M. Garraway

Research has shown that spinal circuits have the capacity to adapt in response to training, nociceptive stimulation and peripheral inflammation. These changes in neural function are mediated by physiological and neurochemical systems analogous to those that support plasticity within the hippocampus (e.g., long-term potentiation and the NMDA receptor). As observed in the hippocampus, engaging spinal circuits can have a lasting impact on plastic potential, enabling or inhibiting the capacity to learn. These effects are related to the concept of metaplasticity. Behavioral paradigms are described that induce metaplastic effects within the spinal cord. Uncontrollable/unpredictable stimulation, and peripheral inflammation, induce a form of maladaptive plasticity that inhibits spinal learning. Conversely, exposure to controllable or predictable stimulation engages a form of adaptive plasticity that counters these maladaptive effects and enables learning. Adaptive plasticity is tied to an up-regulation of brain derived neurotrophic factor (BDNF). Maladaptive plasticity is linked to processes that involve kappa opioids, the metabotropic glutamate (mGlu) receptor, glia, and the cytokine tumor necrosis factor (TNF). Uncontrollable nociceptive stimulation also impairs recovery after a spinal contusion injury and fosters the development of pain (allodynia). These adverse effects are related to an up-regulation of TNF and a down-regulation of BDNF and its receptor (TrkB). In the absence of injury, brain systems quell the sensitization of spinal circuits through descending serotonergic fibers and the serotonin 1A (5HT 1A) receptor. This protective effect is blocked by surgical anesthesia. Disconnected from the brain, intracellular Cl- concentrations increase (due to a down-regulation of the cotransporter KCC2), which causes GABA to have an excitatory effect. It is suggested that BDNF has a restorative effect because it up-regulates KCC2 and re-establishes GABA-mediated inhibition.


The Journal of Neuroscience | 2009

Timing in the absence of supraspinal input II: regularly spaced stimulation induces a lasting alteration in spinal function that depends on the NMDA receptor, BDNF release, and protein synthesis.

Kyle M. Baumbauer; John R. Huie; Abbey J. Hughes; James W. Grau

The detection of temporal regularity allows organisms to predict the occurrence of future events. When events occur in an irregular manner, uncertainty is increased, and negative outcomes can ensue (e.g., stress). The present study shows that spinal neurons can discriminate between variable- and fixed-spaced stimulation and that the detection of regularity requires training and engages a form of NMDA receptor-mediated plasticity. The impact of stimulus exposure was assessed using a spinally mediated instrumental response, wherein spinally transected rats are given legshock whenever one hindlimb is extended. Over time, they learn to maintain the leg in a flexed position that minimizes net shock exposure. Prior exposure to 180–900 tailshocks given in a variable (unpredictable) manner inhibited this learning. A learning deficit was not observed when 900 tailshocks were applied using a fixed (predictable) spacing. Fixed-spaced stimulation did not have a divergent effect when fewer (180) shocks were presented, implying that the abstraction of temporal regularity required repeated exposure (training). Moreover, fixed-spaced stimulation both prevented and reversed the learning deficit. The protective effect of fixed-spaced shock lasted 48 h, and was prevented by pretreatment with the NMDA receptor antagonist MK-801. Administration of the protein synthesis inhibitor cycloheximide after training blocked the long-term effect. Inhibiting BDNF function, using TrkB-IgG, also eliminated the beneficial effect of fixed-spaced stimulation. The results suggest that spinal systems can detect regularity and that this type of stimulation promotes adaptive plasticity, which may foster recovery after spinal injury.


Neuroscience | 2008

Timing in the absence of supraspinal input I: Variable, but not fixed, spaced stimulation of the sciatic nerve undermines spinally-mediated instrumental learning

Kyle M. Baumbauer; Kevin C. Hoy; John R. Huie; Abbey J. Hughes; Sarah A. Woller; Denise A. Puga; Barry Setlow; James W. Grau

Rats with complete spinal transections are capable of acquiring a simple instrumentally trained response. If rats receive shock to one hind limb when the limb is extended (controllable shock), the spinal cord will learn to hold the leg in a flexed position that minimizes shock exposure. If shock is delivered irrespective of leg position, subjects do not exhibit an increase in flexion duration and subsequently fail to learn when tested with controllable shock (learning deficit). Just 6 min of variable intermittent shock produces a learning deficit that lasts 24 h. Evidence suggests that the neural mechanisms underlying the learning deficit may be related to those involved in other instances of spinal plasticity (e.g. windup, long-term potentiation). The present paper begins to explore these relations by demonstrating that direct stimulation of the sciatic nerve also impairs instrumental learning. Six minutes of electrical stimulation (mono- or biphasic direct current [DC]) of the sciatic nerve in spinally transected rats produced a voltage-dependent learning deficit that persisted for 24 h (experiments 1-2) and was dependent on C-fiber activation (experiment 7). Exposure to continuous stimulation did not produce a deficit, but intermittent burst or single pulse (as short as 0.1 ms) stimulation (delivered at a frequency of 0.5 Hz) did, irrespective of the pattern (fixed or variable) of stimulus delivery (experiments 3-6, 8). When the duration of stimulation was extended from 6 to 30 min, a surprising result emerged; shocks applied in a random (variable) fashion impaired subsequent learning whereas shocks given in a regular pattern (fixed spacing) did not (experiments 9-10). The results imply that spinal neurons are sensitive to temporal relations and that stimulation at regular intervals can have a restorative effect.


Brain Research Reviews | 2009

Pain and learning in a spinal system: Contradictory outcomes from common origins

Kyle M. Baumbauer; Erin E. Young; Robin L. Joynes

The long-standing belief that the spinal cord serves merely as a conduit for information traveling to and from the brain is changing. Over the past decade, research has shown that the spinal cord is sensitive to response-outcome contingencies, demonstrating that spinal circuits have the capacity to modify behavior in response to differential environmental cues. If spinally transected rats are administered shock contingent on leg extension (controllable shock), they will maintain a flexion response that minimizes shock exposure. If, however, this contingency is broken, and shock is administered irrespective of limb position (uncontrollable shock), subjects cannot acquire the same flexion response. Interestingly, each of these treatments has a lasting effect on behavior; controllable shock enables future learning, while uncontrollable shock produces a long-lasting learning deficit. Here we suggest that the mechanisms underlying learning and the deficit may have evolved from machinery responsible for the spinal processing of noxious information. Experiments have shown that learning and the deficit require receptors and signaling cascades shown to be involved in central sensitization, including activation of NMDA and neurokinin receptors, as well as CaMKII. Further supporting this link between pain and learning, research has also shown that uncontrollable stimulation results in allodynia. Moreover, systemic inflammation and neonatal hindpaw injury each facilitate pain responding and undermine the ability of the spinal cord to support learning. These results suggest that the plasticity associated with learning and pain must be placed in a balance in order for adaptive outcomes to be observed.

Collaboration


Dive into the Kyle M. Baumbauer's collaboration.

Top Co-Authors

Avatar

Erin E. Young

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Knight

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Yasko

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge