Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kylie Anne Pitt is active.

Publication


Featured researches published by Kylie Anne Pitt.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Recurrent jellyfish blooms are a consequence of global oscillations

Robert H. Condon; Carlos M. Duarte; Kylie Anne Pitt; Kelly L. Robinson; Cathy H. Lucas; Kelly R. Sutherland; Hermes Mianzan; Molly Bogeberg; Jennifer E. Purcell; Mary Beth Decker; Shin-ichi Uye; Laurence P. Madin; Richard D. Brodeur; Steven H. D. Haddock; Alenka Malej; Gregory D. Parry; Elena Eriksen; Javier Quiñones; Milena Acha; Michel Harvey; James Michael Arthur; William M. Graham

A perceived recent increase in global jellyfish abundance has been portrayed as a symptom of degraded oceans. This perception is based primarily on a few case studies and anecdotal evidence, but a formal analysis of global temporal trends in jellyfish populations has been missing. Here, we analyze all available long-term datasets on changes in jellyfish abundance across multiple coastal stations, using linear and logistic mixed models and effect-size analysis to show that there is no robust evidence for a global increase in jellyfish. Although there has been a small linear increase in jellyfish since the 1970s, this trend was unsubstantiated by effect-size analysis that showed no difference in the proportion of increasing vs. decreasing jellyfish populations over all time periods examined. Rather, the strongest nonrandom trend indicated jellyfish populations undergo larger, worldwide oscillations with an approximate 20-y periodicity, including a rising phase during the 1990s that contributed to the perception of a global increase in jellyfish abundance. Sustained monitoring is required over the next decade to elucidate with statistical confidence whether the weak increasing linear trend in jellyfish after 1970 is an actual shift in the baseline or part of an oscillation. Irrespective of the nature of increase, given the potential damage posed by jellyfish blooms to fisheries, tourism, and other human industries, our findings foretell recurrent phases of rise and fall in jellyfish populations that society should be prepared to face.


BioScience | 2012

Questioning the Rise of Gelatinous Zooplankton in the World's Oceans

Robert H. Condon; William M. Graham; Carlos M. Duarte; Kylie Anne Pitt; Cathy H. Lucas; Steven H. D. Haddock; Kelly R. Sutherland; Kelly L. Robinson; Michael N Dawson; Mary Beth Decker; Claudia E. Mills; Jennifer E. Purcell; Alenka Malej; Hermes Mianzan; Shin-ichi Uye; Stefan Gelcich; Laurence P. Madin

During the past several decades, high numbers of gelatinous Zooplankton species have been reported in many estuarine and coastal ecosystems. Coupled with media-driven public perception, a paradigm has evolved in which the global ocean ecosystems are thought to he heading toward being dominated by “nuisance” jellyfish. We question this current paradigm by presenting a broad overview of gelatinous Zooplankton in a historical context to develop the hypothesis that population changes reflect the human-mediated alteration of global ocean ecosystems. To this end, we synthesize information related to the evolutionary context of contemporary gelatinous Zooplankton blooms, the human frame of reference for changes in gelatinous Zooplankton populations, and whether sufficient data are available to have established the paradigm. We conclude that the current paradigm in which it is believed that there has been a global increase in gelatinous Zooplankton is unsubstantiated, and we develop a strategy for addressing the critical questions about long-term, human-related changes in the sea as they relate to gelatinous Zooplankton blooms.


Frontiers in Ecology and the Environment | 2013

Is global ocean sprawl a cause of jellyfish blooms

Carlos M. Duarte; Kylie Anne Pitt; Cathy H. Lucas; Jennifer E. Purcell; Shin-ich Uye; Kelly L. Robinson; Lucas Brotz; Mary Beth Decker; Kelly R. Sutherland; Alenk Malej; Laurence P. Madin; Hermes Mianzan; Josep Maria Gili; Veronica Fuentes; Dacha Atienza; Francesc Pagés; Jennafer Malek; William M. Graham; Robert H. Condon

Jellyfish (Cnidaria, Scyphozoa) blooms appear to be increasing in both intensity and frequency in many coastal areas worldwide, due to multiple hypothesized anthropogenic stressors. Here, we propose that the proliferation of artificial structures – associated with (1) the exponential growth in shipping, aquaculture, and other coastal industries, and (2) coastal protection (collectively, “ocean sprawl”) – provides habitat for jellyfish polyps and may be an important driver of the global increase in jellyfish blooms. However, the habitat of the benthic polyps that commonly result in coastal jellyfish blooms has remained elusive, limiting our understanding of the drivers of these blooms. Support for the hypothesized role of ocean sprawl in promoting jellyfish blooms is provided by observations and experimental evidence demonstrating that jellyfish larvae settle in large numbers on artificial structures in coastal waters and develop into dense concentrations of jellyfish-producing polyps.


Hydrobiologia | 2009

Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production

Kylie Anne Pitt; David T. Welsh; Robert H. Condon

Due to their boom and bust population dynamics and the enormous biomasses they can attain, jellyfish and ctenophores can have a large influence on the cycling of carbon (C), nitrogen (N) and phosphorus (P). This review initially summarises the biochemical composition of jellyfish, and compares and contrasts the mechanisms by which non-zooxanthellate and zooxanthellate jellyfish acquire and recycle C, N and P. The potential influence of elemental cycling by populations of jellyfish on phytoplankton and bacterioplankton production is then assessed. Non-zooxanthellate jellyfish acquire C, N and P predominantly through predation on zooplankton with smaller contributions from the uptake of dissolved organic matter. C, N and P are regenerated via excretion of inorganic (predominantly ammonium (NH4+) and phosphate (PO43−)) and dissolved organic forms (e.g. dissolved free amino acids and dissolved primary amines). Inorganic nutrients excreted by jellyfish populations provide a small but significant proportion of the N and P required for primary production by phytoplankton. Excretion of dissolved organic matter may also support bacterioplankton production but few data are available. In contrast, zooxanthellate medusae derive most of their C from the translocation of photosynthetic products, exhibit no or minimal net release of N and P, and may actively compete with phytoplankton for dissolved inorganic nutrients. Decomposition of jellyfish blooms could result in a large release of inorganic and organic nutrients and the oxygen demand required to decompose their tissues could lead to localised hypoxic or anoxic conditions.


Hydrobiologia | 2009

Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: a review

Kylie Anne Pitt; Rod Martin Connolly; Tarik Meziane

Studies of the trophic ecology of gelatinous zooplankton have predominantly employed gut content analyses and grazing experiments. These approaches record only what is consumed rather than what is assimilated by the jellyfish, only provide evidence of recent feeding, and unless digestion rates of different prey are known, may provide biased estimates of the relative importance of different prey to jellyfish diets. Biochemical tracers, such as stable isotopes and fatty acids, offer several advantages because they differentiate between what is assimilated and what is simply ingested, they provide an analysis of diet that is integrated over time, and may be useful for identifying contributions from sources (e.g., bacteria) that cannot be achieved using gut content approaches. Stable isotope analysis has become more rigorous through recent advances that provide: (1) signature determination of microscopic organisms such as microalgae, (2) analysis of dissolved organic carbon, and (3) improved quantification of relative source contributions. The limitation that natural tracer techniques require different dietary sources to have unique signatures can potentially be overcome using pulse-chase isotope enrichment experiments. Trophic studies of gelatinous zooplankton would benefit by integrating several approaches. For example, gut content analyses may be used to identify potential dietary sources. Stable isotopes could then be used to determine which sources are assimilated and modeling could be used to quantify the contribution of different sources to the diet. Analysis of fatty acid profiles could be used to identify contributions of bacterioplankton to the diet and, potentially, to provide an alternative means of identifying dietary sources in situations where the isotopic signatures of different potential dietary sources overlap. In this review, we outline the application, advantages, and limitations of gut content analyses and stable isotope and fatty acid tracer techniques and discuss the benefits of using an integrated approach toward studies of the trophic ecology of gelatinous zooplankton.


Journal of Ecology | 2014

Phenotypic plasticity promotes persistence following severe events: physiological and morphological responses of seagrass to flooding

Paul Maxwell; Kylie Anne Pitt; Dana Dee Burfeind; Andrew D. Olds; Russell C. Babcock; Rod Martin Connolly

Severe events such as floods or cyclones can have large ecological effects on the structure and functioning of ecosystems. The capacity of an ecosystem to adapt to, or absorb, the effects of a severe event depends on the severity and longevity of the event and the tolerance of the species present. Seagrasses exhibit phenotypic plasticity at the plant to meadow scale through a variety of physiological and morphological acclimations to light stress to enhance photosynthetic capacity. These acclimations provide early warning of the possible risk of larger scale seagrass loss and can therefore be used in predicting how ecosystems might respond to severe events. The physiological and morphological responses of 12 seagrass (Zostera muelleri) meadows to a severe flood were examined to test two main hypotheses: (i) that the physiological and morphological characteristics of seagrass would differ between meadows along the established chronic water quality gradient, in a pattern consistent with prior acclimations which have been shown to enhance photosynthetic capacity and (ii) that physiological and morphological responses to the flood would differ between meadows in a manner consistent with their position along the water quality gradient. Meadows had different physiological and morphological characteristics across the water quality gradient, with meadows subject to chronically poorer water quality exhibiting characteristics consistent with those that maximize photosynthetic capacity. Despite a large discrepancy in impact among meadows, all meadows sampled responded consistently to the flood, exhibiting only physiological changes with no significant reduction in biomass. This suggests that photoacclimation to chronically poor conditions can enable seagrasses to withstand the effects of severe events, such as floods. Synthesis. Phenotypic plasticity in habitat-forming species can result in a large variation in their responses to severe events, such as floods or cyclones. Acclimation to prior poor environmental conditions can promote persistence in habitat-forming species, such as seagrasses, following severe events. The measurement of phenotypic characteristics along an impact gradient can therefore provide an indication of the response of habitat-forming species to severe events. Phenotypic plasticity in habitat-forming species can result in a large variation in their responses to severe events, like floods or cyclones. Acclimation to prior poor environmental conditions can promote persistence in habitat forming species, like seagrasses, following severe events. The measurement of phenotypic characteristics along an impact gradient can therefore provide an indication of the response of habitat forming species to severe events.


Hydrobiologia | 2012

Jelly-falls historic and recent observations: a review to drive future research directions

Mario Lebrato; Kylie Anne Pitt; A. K. Sweetman; Daniel O.B. Jones; Joan Enric Cartes; Andreas Oschlies; Robert H. Condon; Juan Carlos Molinero; Laetitia B. Adler; Christian Gaillard; Domingo Lloris; David S.M. Billett

The biological pump describes the transport of particulate matter from the sea surface to the ocean’s interior including the seabed. The contribution by gelatinous zooplankton bodies as particulate organic matter (POM) vectors (“jelly-falls”) has been neglected owing to technical and spatiotemporal sampling limitations. Here, we assess the existing evidence on jelly-falls from early ocean observations to present times. The seasonality of jelly-falls indicates that they mostly occur after periods of strong upwelling and/or spring blooms in temperate/subpolar zones and during late spring/early summer. A conceptual model helps to define a jelly-fall based on empirical and field observations of biogeochemical and ecological processes. We then compile and discuss existing strategic and observational oceanographic techniques that could be implemented to further jelly-falls research. Seabed video- and photography-based studies deliver the best results, and the correct use of fishing techniques, such as trawling, could provide comprehensive regional datasets. We conclude by considering the possibility of increased gelatinous biomasses in the future ocean induced by upper ocean processes favouring their populations, thus increasing jelly-POM downward transport. We suggest that this could provide a “natural compensation” for predicted losses in pelagic POM with respect to fuelling benthic ecosystems.


PLOS ONE | 2013

Jellyfish body plans provide allometric advantages beyond low carbon content.

Kylie Anne Pitt; Carlos M. Duarte; Cathy H. Lucas; Kelly R. Sutherland; Robert H. Condon; Hermes Mianzan; Jennifer E. Purcell; Kelly L. Robinson; Shin-ichi Uye

Jellyfish form spectacular blooms throughout the world’s oceans. Jellyfish body plans are characterised by high water and low carbon contents which enables them to grow much larger than non-gelatinous animals of equivalent carbon content and to deviate from non-gelatinous pelagic animals when incorporated into allometric relationships. Jellyfish have, however, been argued to conform to allometric relationships when carbon content is used as the metric for comparison. Here we test the hypothesis that differences in allometric relationships for several key functional parameters remain for jellyfish even after their body sizes are scaled to their carbon content. Data on carbon and nitrogen contents, rates of respiration, excretion, growth, longevity and swimming velocity of jellyfish and other pelagic animals were assembled. Allometric relationships between each variable and the equivalent spherical diameters of jellyfish and other pelagic animals were compared before and after sizes of jellyfish were standardised for their carbon content. Before standardisation, the slopes of the allometric relationships for respiration, excretion and growth were the same for jellyfish and other pelagic taxa but the intercepts differed. After standardisation, slopes and intercepts for respiration were similar but excretion rates of jellyfish were 10× slower, and growth rates 2× faster than those of other pelagic animals. Longevity of jellyfish was independent of size. The slope of the allometric relationship of swimming velocity of jellyfish differed from that of other pelagic animals but because they are larger jellyfish operate at Reynolds numbers approximately 10× greater than those of other pelagic animals of comparable carbon content. We conclude that low carbon and high water contents alone do not explain the differences in the intercepts or slopes of the allometric relationships of jellyfish and other pelagic animals and that the evolutionary longevity of jellyfish and their propensity to form blooms is facilitated by their unique body plans.


Marine Pollution Bulletin | 2009

Redistribution of sewage-nitrogen in estuarine food webs following sewage treatment upgrades.

Kylie Anne Pitt; Rod Martin Connolly; Paul Maxwell

Stable nitrogen isotopes were used to assess the effects of wastewater treatment plant (WWTP) upgrades on the utilisation of sewage-N by estuarine biota in Moreton Bay, Australia. We measured delta(15)N of filamentous algae, mangrove leaves and shore crabs at the Brisbane and Logan Rivers before and after scheduled WWTP upgrades, and at two reference rivers where WWTPs had been upgraded >4 years previously. The total N discharged into Brisbane River decreased by >80% after the upgrades had occurred, but N loads remained similar at Logan River despite the upgrade. In Brisbane River, delta(15)N values of algae and crabs decreased and were comparable to the reference rivers within 1-2 years but no changes occurred at Logan River. The delta(15)N of mangrove leaves remained elevated in all rivers, indicating that sewage-N remained a major source to mangroves either from residual WWTP discharges or from N accumulated in the sediments over many years.


Frontiers in Ecology and the Environment | 2014

Linking human well-being and jellyfish: ecosystem services, impacts, and societal responses

William M. Graham; Stefan Gelcich; Kelly L. Robinson; Carlos M. Duarte; Lucas Brotz; Jennifer E. Purcell; Laurence P. Madin; Hermes Mianzan; Kelly R. Sutherland; Shin-ichi Uye; Kylie Anne Pitt; Cathy H. Lucas; Molly Bogeberg; Richard D. Brodeur; Robert H. Condon

Jellyfish are usually perceived as harmful to humans and are seen as “pests”. This negative perception has hindered knowledge regarding their value in terms of ecosystem services. As humans increasingly modify and interact with coastal ecosystems, it is important to evaluate the benefits and costs of jellyfish, given that jellyfish bloom size, frequency, duration, and extent are apparently increasing in some regions of the world. Here we explore those benefits and costs as categorized by regulating, supporting, cultural, and provisioning ecosystem services. A geographical perspective of human vulnerability to jellyfish over four categories of human well-being (health care, food, energy, and freshwater production) is also discussed in the context of thresholds and trade-offs to enable social adaptation. Whereas beneficial services provided by jellyfish likely scale linearly with biomass (perhaps peaking at a saturation point), non-linear thresholds exist for negative impacts to ecosystem services. We sugge...

Collaboration


Dive into the Kylie Anne Pitt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew D. Olds

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert H. Condon

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos M. Duarte

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kelly L. Robinson

University of Southern Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer E. Purcell

Western Washington University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge