Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyoko Hashimoto is active.

Publication


Featured researches published by Kyoko Hashimoto.


Circulation | 2005

Vascular Endothelial Growth Factor Gene Therapy Increases Survival, Promotes Lung Angiogenesis, and Prevents Alveolar Damage in Hyperoxia-Induced Lung Injury Evidence That Angiogenesis Participates in Alveolarization

Bernard Thébaud; Faruqa Ladha; Evangelos D. Michelakis; Monika Sawicka; Gavin Thurston; Farah Eaton; Kyoko Hashimoto; Gwyneth Harry; Alois Haromy; Greg Korbutt; Stephen L. Archer

Background— Bronchopulmonary dysplasia (BPD) and pulmonary emphysema, both significant global health problems, are characterized by a loss of alveoli. Vascular endothelial growth factor (VEGF) is a trophic factor required for endothelial cell survival and is abundantly expressed in the lung. Methods and Results— We report that VEGF blockade decreases lung VEGF and VEGF receptor 2 (VEGFR-2) expression in newborn rats and impairs alveolar development, leading to alveolar simplification and loss of lung capillaries, mimicking BPD. In hyperoxia-induced BPD in newborn rats, air space enlargement and loss of lung capillaries are associated with decreased lung VEGF and VEGFR-2 expression. Postnatal intratracheal adenovirus-mediated VEGF gene therapy improves survival, promotes lung capillary formation, and preserves alveolar development in this model of irreversible lung injury. Combined VEGF and angiopoietin-1 gene transfer matures the new vasculature, reducing the vascular leakage seen in VEGF-induced capillaries. Conclusions— These findings underscore the importance of the vasculature in what is traditionally thought of as an airway disease and open new therapeutic avenues for lung diseases characterized by irreversible loss of alveoli through the modulation of angiogenic growth factors.


Circulation Research | 2004

Dichloroacetate Prevents and Reverses Pulmonary Hypertension by Inducing Pulmonary Artery Smooth Muscle Cell Apoptosis

M. Sean McMurtry; Sébastien Bonnet; Xichen Wu; Jason R. B. Dyck; Alois Haromy; Kyoko Hashimoto; Evangelos D. Michelakis

The pulmonary arteries (PA) in pulmonary arterial hypertension (PAH) are constricted and remodeled;. They have suppressed apoptosis, partly attributable to suppression of the bone morphogenetic protein axis and selective downregulation of PA smooth muscle cell (PASMC) voltage-gated K+ channels, including Kv1.5. The Kv downregulation-induced increase in [K+]i, tonically inhibits caspases, further suppressing apoptosis. Mitochondria control apoptosis and produce activated oxygen species like H2O2, which regulate vascular tone by activating K+ channels, but their role in PAH is unknown. We show that dichloroacetate (DCA), a metabolic modulator that increases mitochondrial oxidative phosphorylation, prevents and reverses established monocrotaline-induced PAH (MCT-PAH), significantly improving mortality. Compared with MCT-PAH, DCA-treated rats (80 mg/kg per day in drinking water on day 14 after MCT, studied on day 21) have decreased pulmonary, but not systemic, vascular resistance (63% decrease, P<0.002), PA medial thickness (28% decrease, P<0.0001), and right ventricular hypertrophy (34% decrease, P<0.001). DCA is similarly effective when given at day 1 or day 21 after MCT (studied day 28) but has no effect on normal rats. DCA depolarizes MCT-PAH PASMC mitochondria and causes release of H2O2 and cytochrome c, inducing a 10-fold increase in apoptosis within the PA media (TUNEL and caspase 3 activity) and decreasing proliferation (proliferating-cell nuclear antigen and BrdU assays). Immunoblots, immunohistochemistry, laser-captured microdissection-quantitative reverse-transcription polymerase chain reaction and patch-clamping show that DCA reverses the Kv1.5 downregulation in resistance PAs. In summary, DCA reverses PA remodeling by increasing the mitochondria-dependent apoptosis/proliferation ratio and upregulating Kv1.5 in the media. We identify mitochondria-dependent apoptosis as a potential target for therapy and DCA as an effective and selective treatment for PAH.


American Journal of Respiratory and Critical Care Medicine | 2009

Airway Delivery of Mesenchymal Stem Cells Prevents Arrested Alveolar Growth in Neonatal Lung Injury in Rats

Timothy van Haaften; Roisin Byrne; Sébastien Bonnet; Gael Rochefort; John Akabutu; Manaf Bouchentouf; G Rey-Parra; Jacques Galipeau; Alois Haromy; Farah Eaton; Ming Chen; Kyoko Hashimoto; Doris Abley; Greg Korbutt; Stephen L. Archer; Bernard Thébaud

RATIONALE Bronchopulmonary dysplasia (BPD) and emphysema are characterized by arrested alveolar development or loss of alveoli; both are significant global health problems and currently lack effective therapy. Bone marrow-derived mesenchymal stem cells (BMSCs) prevent adult lung injury, but their therapeutic potential in neonatal lung disease is unknown. OBJECTIVES We hypothesized that intratracheal delivery of BMSCs would prevent alveolar destruction in experimental BPD. METHODS In vitro, BMSC differentiation and migration were assessed using co-culture assays and a modified Boyden chamber. In vivo, the therapeutic potential of BMSCs was assessed in a chronic hyperoxia-induced model of BPD in newborn rats. MEASUREMENTS AND MAIN RESULTS In vitro, BMSCs developed immunophenotypic and ultrastructural characteristics of type II alveolar epithelial cells (AEC2) (surfactant protein C expression and lamellar bodies) when co-cultured with lung tissue, but not with culture medium alone or liver. Migration assays revealed preferential attraction of BMSCs toward oxygen-damaged lung versus normal lung. In vivo, chronic hyperoxia in newborn rats led to air space enlargement and loss of lung capillaries, and this was associated with a decrease in circulating and resident lung BMSCs. Intratracheal delivery of BMSCs on Postnatal Day 4 improved survival and exercise tolerance while attenuating alveolar and lung vascular injury and pulmonary hypertension. Engrafted BMSCs coexpressed the AEC2-specific marker surfactant protein C. However, engraftment was disproportionately low for cell replacement to account for the therapeutic benefit, suggesting a paracrine-mediated mechanism. In vitro, BMSC-derived conditioned medium prevented O(2)-induced AEC2 apoptosis, accelerated AEC2 wound healing, and enhanced endothelial cord formation. CONCLUSIONS BMSCs prevent arrested alveolar and vascular growth in part through paracrine activity. Stem cell-based therapies may offer new therapeutic avenues for lung diseases that currently lack efficient treatments.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted

Sébastien Bonnet; Gael Rochefort; Gopinath Sutendra; Stephen L. Archer; Alois Haromy; Linda Webster; Kyoko Hashimoto; Sandra Bonnet; Evangelos D. Michelakis

In pulmonary arterial hypertension (PAH), antiapoptotic, proliferative, and inflammatory diatheses converge to create an obstructive vasculopathy. A selective down-regulation of the Kv channel Kv1.5 has been described in human and animal PAH. The resultant increase in intracellular free Ca2+ ([Ca2+]i) and K+ ([K+]i) concentrations explains the pulmonary artery smooth muscle cell (PASMC) contraction, proliferation and resistance to apoptosis. The recently described PASMC hyperpolarized mitochondria and increased bcl-2 levels also contribute to apoptosis resistance in PAH. The cause of the Kv1.5, mitochondrial, and inflammatory abnormalities remains unknown. We hypothesized that these abnormalities can be explained in part by an activation of NFAT (nuclear factor of activated T cells), a Ca2+/calcineurin-sensitive transcription factor. We studied PASMC and lungs from six patients with and four without PAH and blood from 23 PAH patients and 10 healthy volunteers. Compared with normal, PAH PASMC had decreased Kv current and Kv1.5 expression and increased [Ca2+]i, [K+]i, mitochondrial potential (ΔΨm), and bcl-2 levels. PAH but not normal PASMC and lungs showed activation of NFATc2. Inhibition of NFATc2 by VIVIT or cyclosporine restored Kv1.5 expression and current, decreased [Ca2+]i, [K+]i, bcl-2, and ΔΨm, leading to decreased proliferation and increased apoptosis in vitro. In vivo, cyclosporine decreased established rat monocrotaline-PAH. NFATc2 levels were increased in circulating leukocytes in PAH versus healthy volunteers. CD3-positive lymphocytes with activated NFATc2 were seen in the arterial wall in PAH but not normal lungs. The generalized activation of NFAT in human and experimental PAH might regulate the ionic, mitochondrial, and inflammatory remodeling and be a therapeutic target and biomarker.


Circulation | 2003

Endothelium-Derived Hyperpolarizing Factor in Human Internal Mammary Artery Is 11,12-Epoxyeicosatrienoic Acid and Causes Relaxation by Activating Smooth Muscle BKCa Channels

Stephen L. Archer; Ferrante S. Gragasin; Xichen Wu; Shaohua Wang; Sean McMurtry; Daniel Kim; Michael Platonov; Arvind Koshal; Kyoko Hashimoto; William B. Campbell; John R. Falck; Evangelos D. Michelakis

Background—Left internal mammary arteries (LIMAs) synthesize endothelium-derived hyperpolarizing factor (EDHF), a short-lived K+ channel activator that persists after inhibition of nitric oxide (NO) and prostaglandin synthesis. EDHF hyperpolarizes and relaxes smooth muscle cells (SMCs). The identity of EDHF in humans is unknown. We hypothesized that EDHF (1) is 11,12-epoxyeicosatrienoic acid (11,12-EET); (2) is generated by cytochrome P450-2C, CYP450-2C; and (3) causes relaxation by opening SMC large-conductance Ca2+-activated K+ channels (BKCa). Methods and Results—The identity of EDHF and its mechanism of action were assessed in 120 distal human LIMAs and 20 saphenous veins (SVs) obtained during CABG. The predominant EET synthesized by LIMAs is 11,12-EET. Relaxations to exogenous 11,12-EET and endogenous EDHF are of similar magnitudes. Inhibition of EET synthesis by chemically distinct CYP450 inhibitors (17-octadecynoic acid, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide), or a selective EET antagonist (4,15-epoxyeicosa-5(Z)-enoic acid) impairs EDHF relaxation. 11,12-EET activates a BKCa current and hyperpolarizes LIMA SMCs. Inhibitors of BKCa but not inward-rectifier or small-conductance KCa channels abolish relaxation to endogenous EDHF and exogenous 11,12-EET. BKCa and CYP450-2C mRNA and proteins are more abundant in LIMAs than in SVs, perhaps explaining the lack of EDHF activity of the SV. Laser capture microdissection and quantitative RT-PCR demonstrate that BKCa channels are primarily in vascular SMCs, whereas the CYP450-2C enzyme is present in both the endothelium and SMCs. Conclusions—In human LIMAs, EDHF is 11,12-EET produced by an EDHF synthase CYP450-2C and accounting for ≈40% of net endothelial relaxation. 11,12-EET causes relaxation by activating SMC BKCa channels.


Circulation | 2003

In Vivo Gene Transfer of the O2-Sensitive Potassium Channel Kv1.5 Reduces Pulmonary Hypertension and Restores Hypoxic Pulmonary Vasoconstriction in Chronically Hypoxic Rats

Zlatko Pozeg; Evangelos D. Michelakis; M. Sean McMurtry; Bernard Thébaud; Xichen Wu; Jason R. B. Dyck; Kyoko Hashimoto; Shaohua Wang; Rohit Moudgil; Gwyneth Harry; Richard Sultanian; Arvind Koshal; Stephen L. Archer

Background—Alveolar hypoxia acutely elicits pulmonary vasoconstriction (HPV). Chronic hypoxia (CH), despite attenuating HPV, causes pulmonary hypertension (CH-PHT). HPV results, in part, from inhibition of O2-sensitive, voltage-gated potassium channels (Kv) in pulmonary artery smooth muscle cells (PASMCs). CH decreases Kv channel current/expression and depolarizes and causes Ca2+ overload in PASMCs. We hypothesize that Kv gene transfer would normalize the pulmonary circulation (restore HPV and reduce CH-PHT), despite ongoing hypoxia. Methods and Results—Adult male Sprague-Dawley rats were exposed to normoxia or CH for 3 to 4 weeks and then nebulized orotracheally with saline or adenovirus (Ad5) carrying genes for the reporter, green fluorescent protein reporter±human Kv1.5 (cloned from normal PA). HPV was assessed in isolated lungs. Hemodynamics, including Fick and thermodilution cardiac output, were measured in vivo 3 and 14 days after gene therapy by use of micromanometer-tipped catheters. Transgene expression, measured by quantitative RT-PCR, was confined to the lung, persisted for 2 to 3 weeks, and did not alter endogenous Kv1.5 levels. Ad5-Kv1.5 caused no mortality or morbidity, except for sporadic, mild elevation of liver transaminases. Ad5-Kv1.5 restored the O2-sensitive K+ current of PASMCs, normalized HPV, and reduced pulmonary vascular resistance. Pulmonary vascular resistance decreased at day 2 because of increased cardiac output, and remained reduced at day 14, at which time there was concomitant regression of right ventricular hypertrophy and PA medial hypertrophy. Conclusions—Kv1.5 is an important O2-sensitive channel and potential therapeutic target in PHT. Kv1.5 gene therapy restores HPV and improves PHT. This is, to the best of our knowledge, the first example of K+ channel gene therapy for a vascular disease.


Circulation Research | 2004

Preferential Expression and Function of Voltage-Gated, O2-Sensitive K+ Channels in Resistance Pulmonary Arteries Explains Regional Heterogeneity in Hypoxic Pulmonary Vasoconstriction: Ionic Diversity in Smooth Muscle Cells

Stephen L. Archer; Xichen Wu; Bernard Thébaud; Ali Nsair; Sébastien Bonnet; Ben Tyrrell; M. Sean McMurtry; Kyoko Hashimoto; Gwyneth Harry; Evangelos D. Michelakis

Hypoxic pulmonary vasoconstriction (HPV) is initiated by inhibition of O2-sensitive, voltage-gated (Kv) channels in pulmonary arterial smooth muscle cells (PASMCs). Kv inhibition depolarizes membrane potential (EM), thereby activating Ca2+ influx via voltage-gated Ca2+ channels. HPV is weak in extrapulmonary, conduit pulmonary arteries (PA) and strong in precapillary resistance arteries. We hypothesized that regional heterogeneity in HPV reflects a longitudinal gradient in the function/expression of PASMC O2-sensitive Kv channels. In adult male Sprague Dawley rats, constrictions to hypoxia, the Kv blocker 4-aminopyridine (4-AP), and correolide, a Kv1.x channel inhibitor, were endothelium-independent and greater in resistance versus conduit PAs. Moreover, HPV was dependent on Kv-inhibition, being completely inhibited by pretreatment with 4-AP. Kv1.2, 1.5, Kv2.1, Kv3.1b, Kv4.3, and Kv9.3. mRNA increased as arterial caliber decreased; however, only Kv1.5 protein expression was greater in resistance PAs. Resistance PASMCs had greater K+ current (IK) and a more hyperpolarized EM and were uniquely O2− and correolide-sensitive. The O2-sensitive current (active at −65 mV) was resistant to iberiotoxin, with minimal tityustoxin sensitivity. In resistance PASMCs, 4-AP and hypoxia inhibited IK 57% and 49%, respectively, versus 34% for correolide. Intracellular administration of anti-Kv1.5 antibodies inhibited correolide’s effects. The hypoxia-sensitive, correolide-insensitive IK (15%) was conducted by Kv2.1. Anti-Kv1.5 and anti-Kv2.1 caused additive depolarization in resistance PASMCs (Kv1.5>Kv2.1) and inhibited hypoxic depolarization. Heterologously expressed human PASMC Kv1.5 generated an O2− and correolide-sensitive IK like that in resistance PASMCs. In conclusion, Kv1.5 and Kv2.1 account for virtually all the O2-sensitive current. HPV occurs in a Kv-enriched resistance zone because resistance PASMCs preferentially express O2-sensitive Kv-channels.


Cell | 2014

A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation.

Gopinath Sutendra; Adam Kinnaird; Peter Dromparis; Roxane Paulin; Trevor Stenson; Alois Haromy; Kyoko Hashimoto; Nan Zhang; Eric Flaim; Evangelos D. Michelakis

DNA transcription, replication, and repair are regulated by histone acetylation, a process that requires the generation of acetyl-coenzyme A (CoA). Here, we show that all the subunits of the mitochondrial pyruvate dehydrogenase complex (PDC) are also present and functional in the nucleus of mammalian cells. We found that knockdown of nuclear PDC in isolated functional nuclei decreased the de novo synthesis of acetyl-CoA and acetylation of core histones. Nuclear PDC levels increased in a cell-cycle-dependent manner and in response to serum, epidermal growth factor, or mitochondrial stress; this was accompanied by a corresponding decrease in mitochondrial PDC levels, suggesting a translocation from the mitochondria to the nucleus. Inhibition of nuclear PDC decreased acetylation of specific lysine residues on histones important for G1-S phase progression and expression of S phase markers. Dynamic translocation of mitochondrial PDC to the nucleus provides a pathway for nuclear acetyl-CoA synthesis required for histone acetylation and epigenetic regulation.


Circulation Research | 2002

O2 Sensing in the Human Ductus Arteriosus: Regulation of Voltage-Gated K+ Channels in Smooth Muscle Cells by a Mitochondrial Redox Sensor

Evangelos D. Michelakis; Ivan M. Rebeyka; Xichen Wu; Ali Nsair; Bernard Thébaud; Kyoko Hashimoto; Jason R. B. Dyck; Al Haromy; Gwyneth Harry; Amy J. Barr; Stephen L. Archer

Abstract— Functional closure of the human ductus arteriosus (DA) is initiated within minutes of birth by O2 constriction. It occurs by an incompletely understood mechanism that is intrinsic to the DA smooth muscle cell (DASMC). We hypothesized that O2 alters the function of an O2 sensor (the mitochondrial electron transport chain, ETC) thereby increasing production of a diffusible redox-mediator (H2O2), thus triggering an effector mechanism (inhibition of DASMC voltage-gated K+ channels, Kv). O2 constriction was evaluated in 26 human DAs (12 female, aged 9±2 days) studied in their normal hypoxic state or after normoxic tissue culture. In fresh, hypoxic DAs, 4-aminopyridine (4-AP), a Kv inhibitor, and O2 cause similar constriction and K+ current inhibition (IK). Tissue culture for 72 hours, particularly in normoxia, causes ionic remodeling, characterized by decreased O2 and 4-AP constriction in DA rings and reduced O2- and 4-AP–sensitive IK in DASMCs. Remodeled DAMSCs are depolarized and express less O2-sensitive channels (including Kv2.1, Kv1.5, Kv9.3, Kv4.3, and BKCa). Kv2.1 adenoviral gene-transfer significantly reverses ionic remodeling, partially restoring both the electrophysiological and tone responses to 4-AP and O2. In fresh DASMCs, ETC inhibitors (rotenone and antimycin) mimic hypoxia, increasing IK and reversing constriction to O2, but not phenylephrine. O2 increases, whereas hypoxia and ETC inhibitors decrease H2O2 production by altering mitochondrial membrane potential (&Dgr;&PSgr;m). H2O2, like O2, inhibits IK and depolarizes DASMCs. We conclude that O2 controls human DA tone by modulating the function of the mitochondrial ETC thereby varying &Dgr;&PSgr;m and the production of H2O2, which regulates DASMC Kv channel activity and DA tone.


The FASEB Journal | 2001

Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5

Stephen L. Archer; Barry London; Václav Hampl; Xichen Wu; Ali Nsair; Kyoko Hashimoto; Ross Waite; Evangelos D. Michelakis

Hypoxic pulmonary vasoconstriction (HPV) is initiated by the inhibition of several 4‐aminopyridine (4‐AP)‐sensitive, voltage‐gated, K+ channels (Kv). Several O2‐sensitive candidate channels (Kv1.2, Kv1.5, Kv2.1, and Kv3.1b) have been proposed, based on similarities between their characteristics in expression systems and the properties of the O2‐sensitive K+ current (IK) in pulmonary artery smooth muscle cells (PASMCs). We used gene targeting to delete Kv1.5 in mice by creating a SWAP mouse that is functionally a Kv1.5 knockout. We hypothesized that SWAP mice would display impaired HPV. The Kv1.5 α‐subunits present in the endothelium and PASMCs of wild‐type mice were absent in the lungs of SWAP mice, whereas expression of other channels Kv (1.1, 1.2, 2.1, 3.1, 4.3), Kir 3.1, Kir 6.1, and BKCa was unaltered. In isolated lungs and resistance PA rings, HPV was reduced significantly in SWAP versus wild‐type mice. Consistent with this finding, PASMCs from SWAP PAs were slightly depolarized and lacked IKv1.5, a 4‐AP and hypoxia‐sensitive component of IK that activated between ‐50 mV and ‐30 mV. We conclude that a K+ channel containing Kv1.5 α‐subunits is an important effector of HPV in mice.

Collaboration


Dive into the Kyoko Hashimoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xichen Wu

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Nsair

University of Alberta

View shared research outputs
Researchain Logo
Decentralizing Knowledge