Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rohit Moudgil is active.

Publication


Featured researches published by Rohit Moudgil.


Circulation | 2007

Phosphodiesterase Type 5 Is Highly Expressed in the Hypertrophied Human Right Ventricle, and Acute Inhibition of Phosphodiesterase Type 5 Improves Contractility

Stephen L. Archer; Daniel Soliman; Vikram Gurtu; Rohit Moudgil; Alois Haromy; Chantal St. Aubin; Linda Webster; Ivan M. Rebeyka; David B. Ross; Peter E. Light; Jason R.B. Dyck; Evangelos D. Michelakis

Background— Sildenafil was recently approved for the treatment of pulmonary arterial hypertension. The beneficial effects of phosphodiesterase type 5 (PDE5) inhibitors in pulmonary arterial hypertension are thought to result from relatively selective vasodilatory and antiproliferative effects on the pulmonary vasculature and, on the basis of early data showing lack of significant PDE5 expression in the normal heart, are thought to spare the myocardium. Methods and Results— We studied surgical specimens from 9 patients and show here for the first time that although PDE5 is not expressed in the myocardium of the normal human right ventricle (RV), mRNA and protein are markedly upregulated in hypertrophied RV (RVH) myocardium. PDE5 also is upregulated in rat RVH. PDE5 inhibition (with either MY-5445 or sildenafil) significantly increases contractility, measured in the perfused heart (modified Langendorff preparation) and isolated cardiomyocytes, in RVH but not normal RV. PDE5 inhibition leads to increases in both cGMP and cAMP in RVH but not normal RV. Protein kinase G activity is suppressed in RVH, explaining why the PDE5 inhibitor–induced increase in cGMP does not lead to inhibition of contractility. Rather, it leads to inhibition of the cGMP-sensitive PDE3, explaining the increase in cAMP and contractility. This is further supported by our findings that, in RVH protein kinase A, inhibition completely inhibits PDE5-induced inotropy, whereas protein kinase G inhibition does not. Conclusions— The ability of PDE5 inhibitors to increase RV inotropy and to decrease RV afterload without significantly affecting systemic hemodynamics makes them ideal for the treatment of diseases affecting the RV, including pulmonary arterial hypertension.


Circulation | 2006

An Abnormal Mitochondrial–Hypoxia Inducible Factor-1α–Kv Channel Pathway Disrupts Oxygen Sensing and Triggers Pulmonary Arterial Hypertension in Fawn Hooded Rats Similarities to Human Pulmonary Arterial Hypertension

Sébastien Bonnet; Evangelos D. Michelakis; Christopher J. Porter; Miguel A. Andrade-Navarro; Bernard Thébaud; Sandra Bonnet; Alois Haromy; Gwyneth Harry; Rohit Moudgil; M. Sean McMurtry; E. Kenneth Weir; Stephen L. Archer

Background— The cause of pulmonary arterial hypertension (PAH) was investigated in humans and fawn hooded rats (FHR), a spontaneously pulmonary hypertensive strain. Methods and Results— Serial Doppler echocardiograms and cardiac catheterizations were performed in FHR and FHR/BN1, a consomic control that is genetically identical except for introgression of chromosome 1. PAH began after 20 weeks of age, causing death by ≈60 weeks. FHR/BN1 did not develop PAH. FHR pulmonary arterial smooth muscle cells (PASMCs) had a rarified reticulum of hyperpolarized mitochondria with reduced expression of electron transport chain components and superoxide dismutase-2. These mitochondrial abnormalities preceded PAH and persisted in culture. Depressed mitochondrial reactive oxygen species (ROS) production caused normoxic activation of hypoxia inducible factor (HIF-1&agr;), which then inhibited expression of oxygen-sensitive, voltage-gated K+ channels (eg, Kv1.5). Disruption of this mitochondrial-HIF-Kv pathway impaired oxygen sensing (reducing hypoxic pulmonary vasoconstriction, causing polycythemia), analogous to the pathophysiology of chronically hypoxic Sprague-Dawley rats. Restoring ROS (exogenous H2O2) or blocking HIF-1&agr; activation (dominant-negative HIF-1&agr;) restored Kv1.5 expression/function. Dichloroacetate, a mitochondrial pyruvate dehydrogenase kinase inhibitor, corrected the mitochondrial-HIF-Kv pathway in FHR-PAH and human PAH PASMCs. Oral dichloroacetate regressed FHR-PAH and polycythemia, increasing survival. Chromosome 1 genes that were dysregulated in FHRs and relevant to the mitochondria-HIF-Kv pathway included HIF-3&agr; (an HIF-1&agr; repressor), mitochondrial cytochrome c oxidase, and superoxide dismutase-2. Like FHRs, human PAH-PASMCs had dysmorphic, hyperpolarized mitochondria; normoxic HIF-1&agr; activation; and reduced expression/activity of HIF-3&agr;, cytochrome c oxidase, and superoxide dismutase-2. Conclusions— FHRs have a chromosome 1 abnormality that disrupts a mitochondria-ROS-HIF-Kv pathway, leading to PAH. Similar abnormalities occur in idiopathic human PAH. This study reveals an intersection between oxygen-sensing mechanisms and PAH. The mitochondria-ROS-HIF-Kv pathway offers new targets for PAH therapy.


Circulation | 2003

In Vivo Gene Transfer of the O2-Sensitive Potassium Channel Kv1.5 Reduces Pulmonary Hypertension and Restores Hypoxic Pulmonary Vasoconstriction in Chronically Hypoxic Rats

Zlatko Pozeg; Evangelos D. Michelakis; M. Sean McMurtry; Bernard Thébaud; Xichen Wu; Jason R. B. Dyck; Kyoko Hashimoto; Shaohua Wang; Rohit Moudgil; Gwyneth Harry; Richard Sultanian; Arvind Koshal; Stephen L. Archer

Background—Alveolar hypoxia acutely elicits pulmonary vasoconstriction (HPV). Chronic hypoxia (CH), despite attenuating HPV, causes pulmonary hypertension (CH-PHT). HPV results, in part, from inhibition of O2-sensitive, voltage-gated potassium channels (Kv) in pulmonary artery smooth muscle cells (PASMCs). CH decreases Kv channel current/expression and depolarizes and causes Ca2+ overload in PASMCs. We hypothesize that Kv gene transfer would normalize the pulmonary circulation (restore HPV and reduce CH-PHT), despite ongoing hypoxia. Methods and Results—Adult male Sprague-Dawley rats were exposed to normoxia or CH for 3 to 4 weeks and then nebulized orotracheally with saline or adenovirus (Ad5) carrying genes for the reporter, green fluorescent protein reporter±human Kv1.5 (cloned from normal PA). HPV was assessed in isolated lungs. Hemodynamics, including Fick and thermodilution cardiac output, were measured in vivo 3 and 14 days after gene therapy by use of micromanometer-tipped catheters. Transgene expression, measured by quantitative RT-PCR, was confined to the lung, persisted for 2 to 3 weeks, and did not alter endogenous Kv1.5 levels. Ad5-Kv1.5 caused no mortality or morbidity, except for sporadic, mild elevation of liver transaminases. Ad5-Kv1.5 restored the O2-sensitive K+ current of PASMCs, normalized HPV, and reduced pulmonary vascular resistance. Pulmonary vascular resistance decreased at day 2 because of increased cardiac output, and remained reduced at day 14, at which time there was concomitant regression of right ventricular hypertrophy and PA medial hypertrophy. Conclusions—Kv1.5 is an important O2-sensitive channel and potential therapeutic target in PHT. Kv1.5 gene therapy restores HPV and improves PHT. This is, to the best of our knowledge, the first example of K+ channel gene therapy for a vascular disease.


Microcirculation | 2006

The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension.

Rohit Moudgil; Evangelos D. Michelakis; Stephen L. Archer

Potassium channels are tetrameric, membrane‐spanning proteins that selectively conduct K+ at near diffusion‐limited rates. Their remarkable ionic selectivity results from a highly‐conserved K+ recognition sequence in the pore. The classical function of K+ channels is regulation of membrane potential (EM) and thence vascular tone. In pulmonary artery smooth muscle cells (PASMC), tonic K+ egress, driven by a 145/5 mM intracellular/extracellular concentration gradient, contributes to a EM of about −60 mV. It has been recently discovered that K+ channels also participate in vascular remodeling by regulating cell proliferation and apoptosis. PASMC express voltage‐gated (Kv), inward rectifier (Kir), calcium‐sensitive (KCa), and two‐pore (K2P) channels. Certain K+ channels are subject to rapid redox regulation by reactive oxygen species (ROS) derived from the PASMCs oxygen‐sensor (mitochondria and/or NADPH oxidase). Acute hypoxic inhibition of ROS production inhibits Kv1.5, which depolarizes EM, opens voltage‐sensitive, L‐type calcium channels, elevates cytosolic calcium, and initiates hypoxic pulmonary vasoconstriction (HPV). Hypoxia‐inhibited K+ currents are not seen in systemic arterial SMCs. Kv expression is also transcriptionally regulated by HIF‐1α and NFAT. Loss of PASMC Kv1.5 and Kv2.1 contributes to the pathogenesis of pulmonary arterial hypertension (PAH) by causing a sustained depolarization, which increases intracellular calcium and K+, thereby stimulating cell proliferation and inhibiting apoptosis, respectively. Restoring Kv expression (via Kv1.5 gene therapy, dichloroacetate, or anti‐survivin therapy) reduces experimental PAH. Electrophysiological diversity exists within the pulmonary circulation. Resistance PASMC have a homogeneous Kv current (including an oxygen‐sensitive component), whereas conduit PASMC current is a Kv/KCa mosaic. This reflects regional differences in expression of channel isoforms, heterotetramers, splice variants, and regulatory subunits as well as mitochondrial diversity. In conclusion, K+ channels regulate pulmonary vascular tone and remodeling and constitute potential therapeutic targets in the regression of PAH.


Circulation | 2007

Oxygen Activates the Rho/Rho-Kinase Pathway and Induces RhoB and ROCK-1 Expression in Human and Rabbit Ductus Arteriosus by Increasing Mitochondria-Derived Reactive Oxygen Species A Newly Recognized Mechanism for Sustaining Ductal Constriction

Hidemi Kajimoto; Kyoko Hashimoto; Sandra Bonnet; Alois Haromy; Gwyneth Harry; Rohit Moudgil; Toshio Nakanishi; Ivan M. Rebeyka; Bernard Thébaud; Evangelos D. Michelakis; Stephen L. Archer

Background— Constriction of the ductus arteriosus (DA) is initiated at birth by inhibition of O2-sensitive K+ channels in DA smooth muscle cells. Subsequent membrane depolarization and calcium influx through L-type calcium channels initiates functional closure. We hypothesize that Rho-kinase activation is an additional mechanism that sustains DA constriction. Methods and Results— The effect of increased Po2 on the activity and expression of Rho-kinase was assessed in DAs from neonates with hypoplastic left-heart syndrome (n=15) and rabbits (339 term and 99 preterm rabbits). Rho-kinase inhibitors (Y-27632 and fasudil) prevent and reverse O2 constriction. Heterogeneity exists in the sensitivity of constrictors (Po2=endothelin=phenylephrine>KCl) and of fetal vessels (DA=pulmonary artery>aorta) to Rho-kinase inhibition. Inhibition of L-type calcium channels (nifedipine) or removal of extracellular calcium inhibits approximately two thirds of O2 constriction. Residual DA constriction reflects calcium sensitization, which persists after removal of extracellular calcium and blocking of sarcoplasmic reticulum Ca2+-ATPase. In term DA, an increase in Po2 activates Rho-kinase and thereby increases RhoB and ROCK-1 expression. Activation of Rho-kinase in DA smooth muscle cells is initiated by a Po2-dependent, rotenone-sensitive increase in mitochondrion-derived reactive O2 species. O2 effects on Rho-kinase are mimicked by exogenous H2O2. In preterm DAs, immaturity of mitochondrial reactive oxygen species generation is associated with reduced and delayed O2 constriction and lack of Po2-dependent upregulation of Rho-kinase expression. Conclusions— O2 activates Rho-kinase and increases Rho-kinase expression in term DA smooth muscle cells by a redox-regulated, positive-feedback mechanism that promotes sustained vasoconstriction. Conversely, Rho-kinase inhibitors may be useful in maintaining DA patency, as a bridge to congenital heart surgery.


Circulation | 2004

Oxygen-Sensitive Kv Channel Gene Transfer Confers Oxygen Responsiveness to Preterm Rabbit and Remodeled Human Ductus Arteriosus Implications for Infants With Patent Ductus Arteriosus

Bernard Thébaud; Evangelos D. Michelakis; Xi Chen Wu; Rohit Moudgil; Michael Kuzyk; Jason R. B. Dyck; Gwyneth Harry; Kyoko Hashimoto; Alois Haromy; Ivan M. Rebeyka; Stephen L. Archer

Background—Oxygen (O2)-sensitive K+ channels mediate acute O2 sensing in many tissues. At birth, initial functional closure of the ductus arteriosus (DA) results from O2-induced vasoconstriction. This mechanism often fails in premature infants, resulting in persistent DA, a common form of congenital heart disease. We hypothesized that the basis for impaired O2 constriction in preterm DA is reduced expression and function of O2-sensitive, voltage-gated (Kv) channels. Methods and Results—Preterm rabbit DA rings have reduced O2 constriction (even after inhibition of prostaglandin and nitric oxide synthases), and preterm DA smooth muscle cells (DASMCs) display reduced O2-sensitive K+ current. This is associated with decreased mRNA and protein expression of certain O2-sensitive Kv channels (Kv1.5 and Kv2.1) but equivalent expression of the L-type calcium channel. Transmural Kv1.5 or Kv2.1 gene transfer “rescues” the developmental deficiency, conferring O2 responsiveness to preterm rabbit DAs. Targeted SMC Kv1.5 gene transfer also enhances O2 constriction in human DAs. Conclusions—These data demonstrate a central role for developmentally regulated DASMC O2-sensitive Kv channels in the functional closure of the DA. Modulation of Kv channels may have therapeutic potential in diseases associated with impaired O2 responsiveness, including persistent DA.


The FASEB Journal | 2004

The neurovascular mechanism of clitoral erection: nitric oxide and cGMP-stimulated activation of BKCa channels

Ferrante S. Gragasin; Evangelos D. Michelakis; Angie Hogan; Rohit Moudgil; Kyoko Hashimoto; Xichen Wu; Sandra Bonnet; Al Haromy; Stephen L. Archer

Female sexual function is under‐studied, and mechanisms of clitoral engorgement‐relaxation are incompletely understood. Penile erection results from nitric oxide (NO) ‐induced cyclic guanosine monophosphate (cGMP) accumulation. cGMP‐dependent protein kinase (PKG) activates large‐conductance, calcium‐activated potassium channels (BKCa), thereby hyperpolarizing and relaxing vascular and trabecular smooth muscle cells, allowing engorgement. We hypothesize rat clitorises relax by a similar mechanism. Rat clitorises express components of the proposed pathway: neuronal and endothelial NO synthases, soluble guanylyl cyclase (sGC), type 5 phosphodiesterase (PDE‐5), and BKCa channels. The NO donor diethylamine NONOate (DEANO), the PKG activator 8‐pCPT‐cGMP, and the PDE‐5 inhibitor sildenafil, cause dose‐dependent clitoral relaxation that is inhibited by antagonists of PKG (Rp‐8‐Br‐cGMPS) or BKCa channels (iberiotoxin). Electrical field stimulation induces tetrodotoxin‐sensitive NO release and relaxation that is inhibited by the Na+ channel blocker tetrodotoxin or sGC inhibitor 1H‐(1,2,4)oxadiozolo(4,3‐a)quinoxalin‐1‐one. Human BKCa channels, transferred to Chinese hamster ovary cells via an adenoviral vector, and endogenous rat clitoral smooth muscle K+ current are activated by this PKG‐dependent mechanism. Laser confocal microscopy reveals protein expression of BKCa channels on clitoral smooth muscle cells; these cells exhibit BKCa channel activity that is activated by both DEANO and sildenafil. We conclude that neurovascular derived NO causes clitoral relaxation via a PKG‐dependent activation of BKCa channels. The BKCa channel is an appealing target for drug therapy of female erectile dysfunction.— Gragasin, F. S., Michelakis, E. D., Hogan, A., Moudgil, R., Hashimoto, K., Wu, X., Bonnet, S., Haromy, A., Archer, S. L. The neurovascular mechanism of clitoral erection: nitric oxide and cGMP‐stimulated activation of BKCa channels. FASEB J. 18, 1382‐1391 (2004)


Biological Chemistry | 2004

O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide.

Stephen L. Archer; Xi Chen Wu; Bernard Thébaud; Rohit Moudgil; Kyoto Hashimoto; Evangelos D. Michelakis

Abstract The ductus arteriosus (DA) is a fetal artery that allows blood ejected from the right ventricle to bypass the pulmonary circulation in utero. At birth, functional closure of the DA is initiated by an O2-induced, vasoconstrictor mechanism which, though modulated by endothelialderived endothelin and prostaglandins, is intrinsic to the smooth muscle cell (DASMC) [Michelakis et al., Circ. Res. 91 (2002); pp. 478-486]. As pO2 increases, a mitochondrial O2-sensor (electron transport chain complexes I or III) is activated, which generates a diffusible redox mediator (H2O2). H2O2 inhibits voltagegated K+ channels (Kv) in DASMC. The resulting membrane depolarization activates Ltype Ca2+ channels, thereby promoting vasoconstriction. Conversely, inhibiting mitochondrial ETC complexes I or III mimics hypoxia, depolarizing mitochondria, and decreasing H2O2 levels. The resulting increase in K+ current hyperpolarizes the DASMC and relaxes the DA. We have developed two models for study of the DAs O2-sensor pathway, both characterized by decreased O2-constriction and Kv expression: (i) preterm rabbit DA, (ii) ionicallyremodeled, human term DA. The O2-sensitive channels Kv1.5 and Kv2.1 are important to DA O2-constriction and overexpression of either channel enhances DA constriction in these models. Understanding this O2-sensing pathway offers therapeutic targets to modulate the tone and patency of human DA in vivo, thereby addressing a common form of congenital heart disease in preterm infants.


Journal of Hypertension | 2001

Postischemic apoptosis and functional recovery after angiotensin II type 1 receptor blockade in isolated working rat hearts.

Rohit Moudgil; Vijayan Menon; Yi Xu; Sorin Musat-Marcu; Dinender Kumar; Bodh I. Jugdutt

Objective To determine whether chronic angiotensin (AngII) type I receptor (AT1R) blockade inhibits cardiomyocyte (CM) apoptosis and attenuates left ventricular (LV) dysfunction after ischemia–reperfusion (IR) in the isolated working rat heart. Methods Postischemic recovery of LV developed pressure, the apoptotic index (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP in situ nick end labeling or TUNEL assay), and changes in expression of apoptotic markers Bcl-2, Bax, p53 and caspase-3 (Western immunoblots) were measured after IR (50 min aerobic perfusion; 25 min global ischemia; 40 min reperfusion) in working rat hearts that were randomized to five groups of six each along 1 week or 3 week pretreatment arms: sham (no drug, no perfusion); no drug, aerobic perfusion; and oral AT1R blockers losartan (30 mg/kg per day) or UP269-6 (3 mg/kg per day), or no drug before IR. Results Compared to the no drug group after IR, losartan (not UP269-6) preserved functional recovery in 1 and 3 week groups. However, both losartan and UP269-6 reduced the apoptotic index and normalized the increase in Bax, decrease in Bcl-2 and increase in p53 and caspase-3 after IR. A bell-shaped relation between apoptosis and functional recovery after IR was flattened by AT1R blockade. Conclusion The results indicate that IR is associated with LV dysfunction and CM apoptosis involving activation of p53, caspase-3, and increased Bax/Bcl-2 ratio in the working rat heart. Importantly, chronic AT1R blockade inhibited the apoptosis and changes in expression of the markers without improving functional recovery, implying that decrease in apoptosis does not necessarily translate into decreased LV dysfunction.


Journal of Cardiovascular Pharmacology and Therapeutics | 2001

Effect of Chronic AT1 Receptor Antagonism on Postischemic Functional Recovery and AT1/AT2 Receptor Proteins in Isolated Working Rat Hearts

Rohit Moudgil; Yi Xu; Vijayan Menon; Bodh I. Jugdutt

To determine whether chronic angiotensin II (Ang II) type I receptor (ATR) antagonism improves recovery of left ventricular (LV) function after ischemia-reperfusion (IR) and increases AT,R and Ang II type 2 receptor (AT2R) protein expression in isolated working rat hearts, rats were randomized to pretreatment with either losartan (30 mg/kg/day) or UP269-6 (3 mg/kg/day), or no drug (control), for 1 week or 3 weeks before IR (50 min perfusion, 25 min ischemia, 40 min reperfusion). In vitro LV work and power and ex vivo AT,R and AT2R proteins (immunoblots) were measured. Compared to baseline perfusion, LV work and power showed variable recovery in control, losartan, and UP269-6 groups. Compared to control, losartan preserved recovery of LV work and power while UP269-6 showed less recovery after IR at both 1 week and 3 weeks. Both antagonists increased AT2R but not AT,R protein. The duration of pretreatment did not affect the expression of ATR or AT2R proteins. The results indicate that chronic AT,R blockade over 1 or 3 weeks increases AT2R (not ATIR) protein expression and may preserve but not improve postischemic functional recovery compared to controls in isolated working rat hearts.

Collaboration


Dive into the Rohit Moudgil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Thébaud

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge