Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyoko Kanamaru is active.

Publication


Featured researches published by Kyoko Kanamaru.


Molecular Microbiology | 2000

SdiA, an Escherichia coli homologue of quorum-sensing regulators, controls the expression of virulence factors in enterohaemorrhagic Escherichia coli O157:H7

Kyoko Kanamaru; Kengo Kanamaru; Ichiro Tatsuno; Toru Tobe; Chihiro Sasakawa

The quorum‐sensing system in bacteria is a well‐known regulatory system that controls gene expression in a cell density‐dependent manner. A transcriptional regulator (LuxR homologue), signal synthase (LuxI homologue) and autoinducer (acyl homoserine lactone) are indispensable for this system in most Gram‐negative bacteria. In this study, we found that SdiA, an Escherichia coli LuxR homologue, is a negative regulator of the expression of virulence factors EspD and intimin in enterohaemorrhagic E. coli (EHEC) O157:H7. The expression of EspD and intimin was inhibited at the RNA level upon SdiA overexpression. SdiA has a DNA‐binding motif in its C‐terminal part and can bind to the promoter regions of the esp and eae genes in vitro. Extracellular factors, which accumulate in culture supernatants of O157:H7 at the stationary phase of growth and inhibit EspD and intimin synthesis, bind to the N‐terminal part of SdiA in vivo and in vitro. O157:H7 overproducing the N‐terminal part of SdiA exhibited hypertranscription of EspD and intimin, suggesting that the overproduced N‐terminal part had inhibited the activity of intact SdiA through titration of the extracellular factors. These results indicate that a quorum‐sensing system including the SdiA protein controls colonization by O157:H7.


Applied Microbiology and Biotechnology | 2009

Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae.

Yuji Noguchi; Motoaki Sano; Kyoko Kanamaru; Taro Ko; Michio Takeuchi; Masashi Kato; Tetsuo Kobayashi

XlnR is a Zn(II)2Cys6 transcriptional activator of xylanolytic and cellulolytic genes in Aspergillus. Overexpression of the aoxlnR gene in Aspergillus oryzae (A. oryzae xlnR gene) resulted in elevated xylanolytic and cellulolytic activities in the culture supernatant, in which nearly 40 secreted proteins were detected by two-dimensional electrophoresis. DNA microarray analysis to identify the transcriptional targets of AoXlnR led to the identification of 75 genes that showed more than fivefold increase in their expression in the AoXlnR overproducer than in the disruptant. Of these, 32 genes were predicted to encode a glycoside hydrolase, highlighting the biotechnological importance of AoXlnR in biomass degradation. The 75 genes included the genes previously identified as AoXlnR targets (xynF1, xynF3, xynG2, xylA, celA, celB, celC, and celD). Thirty-six genes were predicted to be extracellular, which was consistent with the number of proteins secreted, and 61 genes possessed putative XlnR-binding sites (5′-GGCTAA-3′, 5′-GGCTAG-3′, and 5′-GGCTGA-3′) in their promoter regions. Functional annotation of the genes revealed that AoXlnR regulated the expression of hydrolytic genes for degradation of β-1,4-xylan, arabinoxylan, cellulose, and xyloglucan and of catabolic genes for the conversion of d-xylose to xylulose-5-phosphate. In addition, genes encoding glucose-6-phosphate 1-dehydrogenase and l-arabinitol-4-dehydrogenase involved in d-glucose and l-arabinose catabolism also appeared to be targets of AoXlnR.


Infection and Immunity | 2000

Isolation and characterization of mini-Tn5Km2 insertion mutants of enterohemorrhagic Escherichia coli O157:H7 deficient in adherence to Caco-2 cells.

Ichiro Tatsuno; Hiroshi Kimura; Akiko Okutani; Kyoko Kanamaru; Hiroyuki Abe; Shinya Nagai; Kozo Makino; Hideo Shinagawa; Mitsutaka Yoshida; Katsuhiro Sato; Jyunichi Nakamoto; Toru Tobe; Chihiro Sasakawa

ABSTRACT Adherence of enterohemorrhagic Escherichia coli (EHEC) to intestinal epithelium is essential for initiation of the infection. To identify genes involved in adherence, an EHEC O157:H7 strain (O157Sakai) was mutagenized by mini-Tn5Km2, where Km refers to kanamycin resistance, and 4,677 insertion mutants were screened for their ability to form microcolonies (MC) on Caco-2 cells. The less adherent mutants were divided into three groups: those with no adherent ability (designated as class 1 mutants, n = 10), those less adherent than the wild type (class 2 mutants, n = 16), and those unable to form MC but which adhered in a diffuse manner (class 3 mutants, n = 1). The sites of insertion in class 1 mutants were all found within genes of the locus for enterocyte effacement (LEE) thought to be required for type III protein secretion. Indeed, the class 1 mutants failed to secrete type III secreted proteins such as EspA and Tir into the culture medium. The insertions in class 2 mutants were outside the LEE, and all the mutants except one were able to secrete type III proteins into the culture medium. The class 3 mutant had the insertion in the tir gene in the LEE and was deficient in Tir and intimin expression, suggesting that in the absence of intimin-Tir, O157Sakai can still adhere to Caco-2 cells but in a diffused manner. This was confirmed by construction of a nonpolareae (encoding intimin) mutant. Examination of theeae mutant together with O157Sakai and one of the class 1 mutants for the ability to form MC revealed that EHEC initially adhered diffusely at 1.5 h after infection. Following washing out of the nonadherent bacteria, while wild-type EHEC bacteria developed MC for another 2 to 3 h on Caco-2 cells, the eae mutant diffusely adhered throughout the infection without forming MC. MC with O157Sakai but not the diffusely adherent eae mutant could evoke F-actin condensation beneath the bacterium. Our results suggest that EHEC encodes additional adherence-associated loci and that the type III secreted proteins are involved in the initial diffuse adherence, while the intimin-Tir interaction is required for the subsequent development of MC.


Bioscience, Biotechnology, and Biochemistry | 2007

The SskA and SrrA Response Regulators Are Implicated in Oxidative Stress Responses of Hyphae and Asexual Spores in the Phosphorelay Signaling Network of Aspergillus nidulans

Daisuke Hagiwara; Yoshihiro Asano; Junichiro Marui; Kentaro Furukawa; Kyoko Kanamaru; Masashi Kato; Keietsu Abe; Tetsuo Kobayashi; Takafumi Yamashino; Takeshi Mizuno

Histidine-to-Aspartate (His-Asp) phosphorelay (or two-component) systems are common signal transduction mechanisms implicated in a wide variety of cellular responses to environmental stimuli in both prokaryotes and eukaryotes. For a model filamentous fungi, Aspergillus nidulans, in this study we first compiled a complete list of His-Asp phosphorelay components, including 15 genes for His-kinase (HK), four genes for response regulator (RR), and only one for histidine-containing phosphotransfer intermediate (HPt). For these RR genes, a set of deletion mutants was constructed so as to create a null allele for each. When examined these mutant strains under various conditions stressful for hyphal growth and asexual spore development, two of them (designated ΔsskA and ΔsrrA) showed a marked phenotype of hypersensitivity to oxidative stresses (particularly, to hydrogen peroxide). In this respect, expression of the vegetative-stage specific catB catalase gene was severely impaired in both mutants. Furthermore, conidia from ΔsskA were hypersensitive not only to treatment with H2O2, but also to treatment at aberrantly low (4 °C) and high (50 °C) temperatures, resulting in reduced germination efficiency. In this respect, not only the catA catalase gene specific for asexual development, but also a set of genes encoding the enzymes for synthesis of certain stress tolerant compatible solutes, such as trehalose and glycerol, were markedly downregulated in conidia from ΔsskA. These results together are indicative of the physiological importance of the His-Asp phosphorelay signaling network involving the SskA and SrrA response regulators.


Bioscience, Biotechnology, and Biochemistry | 2007

Characterization of the NikA Histidine Kinase Implicated in the Phosphorelay Signal Transduction of Aspergillus nidulans, with Special Reference to Fungicide Responses

Daisuke Hagiwara; Yoshihiro Matsubayashi; Junichiro Marui; Kentaro Furukawa; Takafumi Yamashino; Kyoko Kanamaru; Masashi Kato; Keietsu Abe; Tetsuo Kobayashi; Takeshi Mizuno

We recently compiled a complete list of phosphorelay signal transduction components in the model filamentous fungus Aspergillus nidulans. In this study, we characterized a histidine protein kinase (designated NikA) that is found in many fungi, with special reference to responses to potent fungicides (iprodione and fludioxonil). We provided evidence that not only NikA, but also two downstream response regulators (SskA and SrrA) are crucially implicated in the mode of action of these fungicides, and also that the further downstream HogA-MAPK cascade is exaggerated abnormally (or ectopically) in hyphae by the fungicides in a manner dependent on the NikA-SskA phosphorelay.


Molecular Microbiology | 1993

Signal transduction between the two regulatory components involved in the regulation of the kdpABC operon in Escherichia coli: Phosphorylation-dependent functioning of the positive regulator, KdpE

Kyoko Nakashima; Akemi Sugiura; Kyoko Kanamaru; Takeshi Mizuno

The proteins KdpD and KdpE are crucial to the osmotic regulation of the kdpABC operon that is responsible for the high‐affinity K+ ion transport system in Escherichia coli. We demonstrated previously that the response regulator, KdpE, is capable of undergoing Phosphorylation mediated by the sensory protein kinase, KdpD. In this study, we obtained biochemical evidence supporting the view that when KdpE is phosphorylated, it takes on an active form that exhibits relatively high affinity for the kdpABC promoter, which in turn results in activation of the kdpABC operon. It was also suggested that the central hydrophobic domain of KdpD, which is conceivably responsible for membrane anchoring of this protein, plays a role in the signalling mechanism underlying KdpE Phosphorylation in response to hyperosmotic stress.


Journal of Bacteriology | 2001

Dissection of the Functional and Structural Domains of Phosphorelay Histidine Kinase A of Bacillus subtilis

Ling Wang; Céline Fabret; Kyoko Kanamaru; Keith Stephenson; Véronique Dartois; Marta Perego; James A. Hoch

The initiation of sporulation in Bacillus subtilis results primarily from phosphoryl group input into the phosphorelay by histidine kinases, the major kinase being kinase A. Kinase A is active as a homodimer, the protomer of which consists of an approximately 400-amino-acid N-terminal putative signal-sensing region and a 200-amino-acid C-terminal autokinase. On the basis of sequence similarity, the N-terminal region may be subdivided into three PAS domains: A, B, and C, located from the N- to the C-terminal end. Proteolysis experiments and two-hybrid analyses indicated that dimerization of the N-terminal region is accomplished through the PAS-B/PAS-C region of the molecule, whereas the most amino-proximal PAS-A domain is not dimerized. N-terminal deletions generated with maltose binding fusion proteins showed that an intact PAS-A domain is very important for enzymatic activity. Amino acid substitution mutations in PAS-A as well as PAS-C affected the in vivo activity of kinase A, suggesting that both PAS domains are required for signal sensing. The C-terminal autokinase, when produced without the N-terminal region, was a dimer, probably because of the dimerization required for formation of the four-helix-bundle phosphotransferase domain. The truncated autokinase was virtually inactive in autophosphorylation with ATP, whereas phosphorylation of the histidine of the phosphotransfer domain by back reactions from Spo0F~P appeared normal. The phosphorylated autokinase lost the ability to transfer its phosphoryl group to ADP, however. The N-terminal region appears to be essential both for signal sensing and for maintaining the correct conformation of the autokinase component domains.


Bioscience, Biotechnology, and Biochemistry | 2011

Xylose Triggers Reversible Phosphorylation of XlnR, the Fungal Transcriptional Activator of Xylanolytic and Cellulolytic Genes in Aspergillus oryzae

Yuji Noguchi; Hisaki Tanaka; Kyoko Kanamaru; Masashi Kato; Tetsuo Kobayashi

XlnR is a transcription factor that mediates D-xylose-triggered induction of xylanolytic and cellulolytic genes in Aspergillus. In order to clarify the molecular mechanisms underlying XlnR-mediated induction, Aspergillus oryzae XlnR was fused with the c-myc tag and examined by Western blotting. Phosphate-affinity SDS–PAGE revealed that XlnR was present as a mixture of variously phosphorylated forms in the absence of D-xylose, and that D-xylose triggered additional phosphorylation of the protein. D-Xylose-triggered phosphorylation was a rapid process occurring within 5 min prior to the accumulation of xynG2 mRNA, and removal of D-xylose caused slow dephosphorylation, leading to less-phosphorylated forms. At 30 min after removal, the phosphorylation status was almost identical to that in the absence of D-xylose, and the level of xynG2 mRNA started to decrease. These results indicate that XlnR is highly phosphorylated when it is active in transactivation, implying that D-xylose-triggered reversible phosphorylation controls XlnR activity.


Molecular Microbiology | 2006

A novel ligand bound ABC transporter, LolCDE, provides insights into the molecular mechanisms underlying membrane detachment of bacterial lipoproteins

Yasuko Ito; Kyoko Kanamaru; Naohiro Taniguchi; Shigehiko Miyamoto; Hajime Tokuda

The LolCDE complex of Escherichia coli belongs to the ABC transporter superfamily and initiates the lipoprotein sorting to the outer membrane by catalysing their release from the inner membrane. LolC and/or LolE, membrane subunits, recognize lipoproteins anchored to the outer surface of the inner membrane, while LolD hydrolyses ATP on its inner surface. We report here that ligand‐bound LolCDE can be purified from the inner membrane in the absence of ATP. Liganded LolCDE represents an intermediate of the release reaction and exhibits higher affinity for ATP than the unliganded form. ATP binding to LolD weakens the interaction between LolCDE and lipoproteins and causes their dissociation in a detergent solution, while lipoprotein release from membranes requires ATP hydrolysis. Liganded LolCDE thus reveals molecular events brought about through ATP binding and hydrolysis. LolCDE is the first example of an ABC transporter purified with tightly bound native substrates. A single molecule of lipoprotein is found to bind per molecule of the LolCDE complex.


Molecular Microbiology | 2003

A mutation in the membrane subunit of an ABC transporter LolCDE complex causing outer membrane localization of lipoproteins against their inner membrane-specific signals.

Shin-ichiro Narita; Kyoko Kanamaru; Shin-ichi Matsuyama; Hajime Tokuda

Lipoproteins in Gram‐negative bacteria are anchored to the inner or outer membrane via fatty acids attached to the N‐terminal cysteine. The residue at position 2 determines the membrane specificity. An ATP binding cassette transporter LolCDE complex releases lipoproteins with residues other than aspartate at position 2 from the inner membrane, whereas those with aspartate at position 2 are rejected by LolCDE and therefore remain in the inner membrane. For further understanding of this rejection mechanism, a novel strategy was developed to select mutants in which lipoproteins with aspartate at position 2 are released. The isolated mutants carried an alanine to proline mutation at position 40 of LolC, a membrane subunit of the LolCDE complex. A significant portion of an inner membrane lipoprotein, L10P(DQ), was localized to the outer membrane when the LolC mutant was expressed. Periplasmic chaperone LolA formed a complex with the released L10P(DQ), which was subsequently incorporated into the outer membrane in a LolB‐dependent manner, indicating that neither LolA nor LolB rejects lipoproteins with aspartate at position 2. The amount of the LolC mutant co‐purified with LolD and LolE after membrane solubilization was reduced significantly. Taken together, these results indicate that the mutation causes destabilization of the LolCDE complex and concomitantly prevents the accurate recognition of lipoprotein‐sorting signals.

Collaboration


Dive into the Kyoko Kanamaru's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge