Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyong Hye Joung is active.

Publication


Featured researches published by Kyong Hye Joung.


PLOS ONE | 2016

The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction

Yea Eun Kang; Ji Min Kim; Kyong Hye Joung; Ju Hee Lee; Bo Ram You; Min Jeong Choi; Min Jeong Ryu; Young Bok Ko; Min A Lee; J. Lee; Bon Jeong Ku; Minho Shong; Ki Hwan Lee; Hyun Jin Kim

The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance have been explored in both animal and human studies. However, our current understanding of obesity-associated insulin resistance relies on studies of artificial metabolic extremes. The purpose of this study was to explore the roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in human patients with modest obesity and early metabolic dysfunction. We obtained omental adipose tissue and fasting blood samples from 51 females undergoing gynecologic surgery. We investigated serum concentrations of proinflammatory cytokines and adipokines as well as the mRNA expression of proinflammatory and macrophage phenotype markers in visceral adipose tissue using ELISA and quantitative RT-PCR. We measured adipose tissue inflammation and macrophage infiltration using immunohistochemical analysis. Serum levels of adiponectin and leptin were significantly correlated with HOMA-IR and body mass index. The levels of expression of MCP-1 and TNF-α in visceral adipose tissue were also higher in the obese group (body mass index ≥ 25). The expression of mRNA MCP-1 in visceral adipose tissue was positively correlated with body mass index (r = 0.428, p = 0.037) but not with HOMA-IR, whereas TNF-α in visceral adipose tissue was correlated with HOMA-IR (r = 0.462, p = 0.035) but not with body mass index. There was no obvious change in macrophage phenotype or macrophage infiltration in patients with modest obesity or early metabolic dysfunction. Expression of mRNA CD163/CD68 was significantly related to mitochondrial-associated genes and serum inflammatory cytokine levels of resistin and leptin. These results suggest that changes in the production of inflammatory biomolecules precede increased immune cell infiltration and induction of a macrophage phenotype switch in visceral adipose tissue. Furthermore, serum resistin and leptin have specific roles in the regulation of adipose tissue macrophages in patients with modest obesity or early metabolic dysfunction.


Diabetes & Metabolism Journal | 2014

GDF15 Is a Novel Biomarker for Impaired Fasting Glucose

Jun Hwa Hong; Hyo Kyun Chung; Hye Yoon Park; Kyong Hye Joung; Ju Hee Lee; Jin Gyu Jung; Koon Soon Kim; Hyun Jin Kim; Bon Jeong Ku; Minho Shong

Background Growth differentiation factor-15 (GDF15) is a protein that belongs to the transforming growth factor β superfamily. An elevated serum level of GDF15 was found to be associated with type 2 diabetes mellitus (T2DM). T2DM is an inflammatory disease that progresses from normal glucose tolerance (NGT) to impaired fasting glucose (IFG). Hence, we aimed to validate the relationship between GDF15 and IFG. Methods The participants were divided into the following three groups: NGT (n=137), IFG (n=29), and T2DM (n=75). The controls and T2DM outpatients visited the hospital for routine health check-ups. We used fasting blood glucose to detect IFG in nondiabetic patients. We checked the body mass index (BMI), C-reactive protein level, metabolic parameters, and fasting serum GDF15 level. Results Age, BMI, triglyceride, insulin, glucose, homeostatic model assessment-insulin resistance (HOMA-IR), and GDF15 levels were elevated in the IFG and T2DM groups compared to the NGT group. In the correlation analysis between metabolic parameters and GDF15, age and HOMA-IR had a significant positive correlation with GDF15 levels. GDF15 significantly discriminated between IFG and NGT, independent of age, BMI, and HOMA-IR. The serum levels of GDF15 were more elevated in men than in women. As a biomarker for IFG based on the receiver operating characteristic curve analysis, the cutoff value of GDF15 was 510 pg/mL in males and 400 pg/mL in females. Conclusion GDF15 had a positive correlation with IR independent of age and BMI, and the serum level of GDF15 was increased in the IFG and T2DM groups. GDF15 may be a novel biomarker for detecting IFG in nondiabetic patients.


BioMed Research International | 2015

The Association between Type 2 Diabetes Mellitus and Women Cancer: The Epidemiological Evidences and Putative Mechanisms

Kyong Hye Joung; Jae Wook Jeong; Bon Jeong Ku

Type 2 diabetes mellitus (T2DM), a chronic disease increasing rapidly worldwide, is well established as an important risk factor for various types of cancer. Although many factors impact the development of T2DM and cancer including sex, age, ethnicity, obesity, diet, physical activity levels, and environmental exposure, many epidemiological and experimental studies are gradually contributing to knowledge regarding the interrelationship between DM and cancer. The insulin resistance, hyperinsulinemia, and chronic inflammation associated with diabetes mellitus are all associated strongly with cancer. The changes in bioavailable ovarian steroid hormone that occur in diabetes mellitus (the increasing levels of estrogen and androgen and the decreasing level of progesterone) are also considered potentially carcinogenic conditions for the breast, endometrium, and ovaries in women. In addition, the interaction among insulin, insulin-like growth factors (IGFs), and ovarian steroid hormones, such as estrogen and progesterone, could act synergistically during cancer development. Here, we review the cancer-related mechanisms in T2DM, the epidemiological evidence linking T2DM and cancers in women, and the role of antidiabetic medication in these cancers.


European Journal of Endocrinology | 2012

Dual specificity phosphatase 6 as a predictor of invasiveness in papillary thyroid cancer

Jung Uee Lee; Songmei Huang; Min Hee Lee; Seong Eun Lee; Min Jeong Ryu; Sung Joong Kim; Yong Kyoung Kim; Seul Young Kim; Kyong Hye Joung; Jin-Man Kim; Minho Shong; Young Suk Jo

OBJECTIVE The genetic mutations causing the constitutive activation of MEK/ERK have been regarded as an initiating factor in papillary thyroid carcinoma (PTC). The ERK-specific dual specificity phosphatase 6 (DUSP6) is part of the ERK-dependent transcriptional output. Therefore, the coordinated regulation of the activities of ERK kinases and DUSP6 may need to be reestablished to make new balances in PTC. METHODS To investigate the role of DUSP6 in the regulation of ERK1/2 (MAPK3/1)-dependent transcription, 42 benign neoplasms and 167 PTCs were retrospectively analyzed by immunohistochemistry with dideoxy sequencing to detect BRAF(V600E) mutation. RESULTS The expressions of total ERK1/2, DUSP6, c-Fos (FOS), c-Myc (MYC), cyclin D1, and PCNA were markedly increased in PTC compared with those in benign neoplasms. However, phospho-ERK1/2 was detected in only eight (4.8%) cases out of 167 PTC samples. Unexpectedly, the staining intensity and nuclear localization of ERK1/2 were not affected by the presence or absence of the BRAF(V600E) mutation. However, the expressions of c-Fos and PCNA were elevated in BRAF(V600E)-positive PTC compared with those in BRAF(V600E)-negative PTC. Interestingly, the higher staining intensities of DUSP6 were associated with the level of total ERK1/2 expression (P=0.04) and with high-risk biological features such as age (P=0.05), tumor size (P=0.01), and extrathyroidal extension (linear by linear association, P=0.02). In addition, DUSP6 silencing significantly decreased the cell viability and migration rate of FRO cells. CONCLUSIONS The coordinated upregulation of total ERK1/2 and its phosphatase, DUSP6, is related to bare detection of phospho-ERK1/2 in PTC regardless of BRAF(V)(600E) mutation status. A link between DUSP6 expression and high-risk features of PTC suggested that DUSP6 is an important independent factor affecting the signaling pathways in established PTC.


Carcinogenesis | 2015

Dysregulation of Parkin-mediated mitophagy in thyroid Hürthle cell tumors.

J. Lee; Sujin Ham; Min Hee Lee; Soung Jung Kim; Ji Hoon Park; Seong Eun Lee; Joon Young Chang; Kyong Hye Joung; Tae Yong Kim; Jin-Man Kim; Hae Joung Sul; Gi Ryang Kweon; Young Suk Jo; Koon Soon Kim; Young Kee Shong; Giuseppe Gasparre; Jongkyeong Chung; Anna Maria Porcelli; Minho Shong

Abnormal accumulation of defective mitochondria is the hallmark of oncocytes, which are frequently observed in thyroid Hürthle cell lesions. Autophagy is an essential cellular catabolic mechanism for the degradation of dysfunctional organelles and has been implicated in several human diseases. It is yet unknown how autophagic turnover of defective mitochondria in Hürthle cell tumors is regulated. We characterized the expression patterns of molecular markers including Beclin1, LC3, PINK1 and Parkin, which are required for autophagy or mitophagy, in human oncocytic lesions of the thyroid. To undertake mechanistic studies, we investigated autophagy and mitophagy using XTC.UC1 cells, the only in vitro model of Hürthle cell tumors. Beclin1 and LC3 were highly expressed in oncocytes of Hürthle cell tumors. XTC.UC1 showed autophagic responses to starvation and rapamycin treatment, whereas they displayed ineffective activation of mitophagy, which is triggered by the coordinated action of PINK1 and Parkin in response to CCCP. This resulted in a decreased turnover of abnormal mitochondria. The mechanisms underlying defective mitophagy and mitochondrial turnover were investigated by genetic analysis of the PARK2 gene in XTC.UC1 and Hürthle cell tumor tissues. XTC.UC1 and several tumors harbored the V380L mutation, resulting in dysfunctional autoubiquitination and decreased E3 ligase activity. Consistently, oncocytes in Hürthle cell tumors displayed comparable expression of PINK1 but decreased Parkin expression in comparison to normal thyrocytes. The introduction of wild-type Parkin sensitized XTC.UC1 to death induced by CCCP. This study provides a possible etiological basis for oncocytic formation in heterogeneous Hürthle cell tumors through insufficient mitophagy leading to ineffective turnover of aberrant mitochondria caused by dysfunctional Parkin-mediated pathways of mitochondria quality control.


Endocrinology | 2015

Thyroid Dysfunction Associated With Follicular Cell Steatosis in Obese Male Mice and Humans

Min Hee Lee; Jung Uee Lee; Kyong Hye Joung; Yong Kyung Kim; Min Jeong Ryu; Seong Eun Lee; Soung Jung Kim; Hyo Kyun Chung; Min Jeong Choi; Joon Young Chang; Sang-Hee Lee; Gi Ryang Kweon; Hyun Jin Kim; Koon Soon Kim; Seong-Min Kim; Young Suk Jo; Jeongwon Park; Sheue-yann Cheng; Minho Shong

Adult thyroid dysfunction is a common endocrine disorder associated with an increased risk of cardiovascular disease and mortality. A recent epidemiologic study revealed a link between obesity and increased prevalence of hypothyroidism. It is conceivable that excessive adiposity in obesity might lead to expansion of the interfollicular adipose (IFA) depot or steatosis in thyroid follicular cells (thyroid steatosis, TS). In this study, we investigated the morphological and functional changes in thyroid glands of obese humans and animal models, diet-induced obese (DIO), ob/ob, and db/db mice. Expanded IFA depot and TS were observed in obese patients. Furthermore, DIO mice showed increased expression of lipogenesis-regulation genes, such as sterol regulatory element binding protein 1 (SREBP-1), peroxisome proliferator-activated receptor γ (PPARγ), acetyl coenzyme A carboxylase (ACC), and fatty acid synthetase (FASN) in the thyroid gland. Steatosis and ultrastructural changes, including distension of the endoplasmic reticulum (ER) and mitochondrial distortion in thyroid follicular cells, were uniformly observed in DIO mice and genetically obese mouse models, ob/ob and db/db mice. Obese mice displayed a variable degree of primary thyroid hypofunction, which was not corrected by PPARγ agonist administration. We propose that systemically increased adiposity is associated with characteristic IFA depots and TS and may cause or influence the development of primary thyroid failure.


Diabetes Research and Clinical Practice | 2016

Comparison of serum Neuregulin 4 (Nrg4) levels in adults with newly diagnosed type 2 diabetes mellitus and controls without diabetes

Yea Eun Kang; Ji Min Kim; Sorim Choung; Kyong Hye Joung; Ju Hee Lee; Hyun Jin Kim; Bon Jeong Ku

We explored the role of Neuregulin 4 (Nrg4), a newly described factor secreted by adipose tissue, by measuring serum Nrg4 levels in humans. Circulating Nrg4 levels were significantly higher in patients with diabetes mellitus compared with controls without diabetes and were correlated with the serum glucose level and insulin resistance.


Journal of Korean Medical Science | 2016

Association between Growth Differentiation Factor 15 (GDF15) and Cardiovascular Risk in Patients with Newly Diagnosed Type 2 Diabetes Mellitus

Min Young Shin; Ji Min Kim; Yea Eun Kang; Min Kyeong Kim; Kyong Hye Joung; Ju Hee Lee; Koon Soon Kim; Hyun Jin Kim; Bon Jeong Ku; Minho Shong

We investigated an association between serum Growth Differentiation Factor 15 (GDF15) level and cardiovascular risk in patients with newly diagnosed type 2 diabetes mellitus (T2D). A total of 107 participants were screened for T2D and divided into a T2D group and a control group (without diabetes). We used the Framingham risk score (FRS) and the New Pooled Cohort Equation score to estimate the 10-year risk of atherosclerotic cardiovascular disease. Serum GDF15 levels were measured using an enzyme-linked immunosorbent assay. Correlation analyses were performed to evaluate the associations between GDF15 level and cardiovascular risk scores. The mean serum GDF15 level was elevated in the T2D group compared to the control group (P < 0.001). A positive correlation was evident between serum GDF15 level and age (r = 0.418, P = 0.001), the FRS (r = 0.457, P < 0.001), and the Pooled Cohort Equation score (r = 0.539, P < 0.001). After adjusting for age, LDL-C level, and body mass index (BMI), the serum GDF15 level was positively correlated with the FRS and the New Pooled Cohort Equation score. The serum GDF15 level is independently associated with cardiovascular risk scores of newly diagnosed T2D patients. This suggests that the level of GDF15 may be a useful predictive biomarker of cardiovascular risk in newly diagnosed T2D patients.


Endocrinology and Metabolism | 2015

Mitochondrial Energy Metabolism and Thyroid Cancers

J. Lee; Joon Young Chang; Yea Eun Kang; Shinae Yi; Min Hee Lee; Kyong Hye Joung; Kun Soon Kim; Minho Shong

Primary thyroid cancers including papillary, follicular, poorly differentiated, and anaplastic carcinomas show substantial differences in biological and clinical behaviors. Even in the same pathological type, there is wide variability in the clinical course of disease progression. The molecular carcinogenesis of thyroid cancer has advanced tremendously in the last decade. However, specific inhibition of oncogenic pathways did not provide a significant survival benefit in advanced progressive thyroid cancer that is resistant to radioactive iodine therapy. Accumulating evidence clearly shows that cellular energy metabolism, which is controlled by oncogenes and other tumor-related factors, is a critical factor determining the clinical phenotypes of cancer. However, the role and nature of energy metabolism in thyroid cancer remain unclear. In this article, we discuss the role of cellular energy metabolism, particularly mitochondrial energy metabolism, in thyroid cancer. Determining the molecular nature of metabolic remodeling in thyroid cancer may provide new biomarkers and therapeutic targets that may be useful in the management of refractory thyroid cancers.


PLOS ONE | 2014

Amelioration of hypercholesterolemia by an EGFR tyrosine kinase inhibitor in mice with liver-specific knockout of Mig-6.

Jun Choul Lee; Byung Kil Park; Sorim Choung; Ji Min Kim; Kyong Hye Joung; Ju Hee Lee; Koon Soon Kim; Hyun Jin Kim; Jae Wook Jeong; Sang Dal Rhee; Bon Jeong Ku

Mitogen-inducible gene 6 (Mig-6) is a negative feedback inhibitor of epidermal growth factor receptor (EGFR) signaling. We previously found that Mig-6 plays a critical role in the regulation of cholesterol homeostasis and in bile acid synthesis. In this study, we investigated the effects of EGFR inhibition to identify a potential new treatment target for hypercholesterolemia. We used a mouse model with conditional ablation of the Mig-6 gene in the liver (Albcre/+Mig-6f/f; Mig-6d/d) to effectively investigate the role of Mig-6 in the regulation of liver function. Mig-6d/d mice were treated with either the EGFR inhibitor gefitinib or statin for 6 weeks after administration of a high-fat or standard diet. We then compared lipid profiles and other parameters among each group of mice. After a high-fat diet, Mig-6d/d mice showed elevated serum levels of total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides and glucose, characteristics resembling hypercholesterolemia in diabetic patients. We observed decreases in serum levels of lipids and glucose in high-fat-diet-fed Mig-6d/d mice after 6 weeks of treatment with gefitinib or statin. Furthermore gefitinib-treated mice showed significantly greater decreases in serum levels of total, HDL and LDL cholesterol compared with statin-treated mice. Taken together, these results suggest that EGFR inhibition is effective for the treatment of hypercholesterolemia in high-fat-diet-fed Mig-6d/d mice, and our findings provide new insights into the development of possible treatment targets for hypercholesterolemia via modulation of EGFR inhibition.

Collaboration


Dive into the Kyong Hye Joung's collaboration.

Top Co-Authors

Avatar

Bon Jeong Ku

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyun Jin Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Ji Min Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Koon Soon Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Minho Shong

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Ju Hee Lee

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Yea Eun Kang

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Sorim Choung

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Min Hee Lee

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

J. Lee

Catholic University of Korea

View shared research outputs
Researchain Logo
Decentralizing Knowledge