Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyoung-Sun Lee is active.

Publication


Featured researches published by Kyoung-Sun Lee.


The Astrophysical Journal | 2014

Are the Faint Structures Ahead of Solar Coronal Mass Ejections Real Signatures of Driven Shocks

Jae-Ok Lee; Y.-J. Moon; Jin-Yi Lee; Kyoung-Sun Lee; Sujin Kim; Kangjin Lee

Recently, several studies have assumed that the faint structures ahead of coronal mass ejections (CMEs) are caused by CME-driven shocks. In this study, we have conducted a statistical investigation to determine whether or not the appearance of such faint structures depends on CME speeds. For this purpose, we use 127 Solar and Heliospheric Observatory/Large Angle Spectroscopic COronagraph (LASCO) front-side halo (partial and full) CMEs near the limb from 1997 to 2011. We classify these CMEs into two groups by visual inspection of CMEs in the LASCO-C2 field of view: Group 1 has the faint structure ahead of a CME and Group 2 does not have such a structure. We find the following results. (1) Eighty-seven CMEs belong to Group 1 and 40 CMEs belong to Group 2. (2) Group 1 events have much higher speeds (average = 1230 km s–1 and median = 1199 km s–1) than Group 2 events (average = 598 km s–1 and median = 518 km s–1). (3) The fraction of CMEs with faint structures strongly depends on CME speeds (V): 0.93 (50/54) for fast CMEs with V ≥ 1000 km s–1, 0.65 (34/52) for intermediate CMEs with 500 km s–1 ≤ V < 1000 km s–1, and 0.14 (3/21) for slow CMEs with V < 500 km s–1. We also find that the fraction of CMEs with deca-hecto metric type II radio bursts is consistent with the above tendency. Our results indicate that the observed faint structures ahead of fast CMEs are most likely an enhanced density manifestation of CME-driven shocks.


The Astrophysical Journal | 2017

IRIS, Hinode, SDO, and RHESSI Observations of a White Light Flare Produced Directly by Non-thermal Electrons

Kyoung-Sun Lee; Shinsuke Imada; Kyoko Watanabe; Yumi Bamba; David H. Brooks

An X1.6 flare occurred in AR 12192 on 2014 October 22 at 14:02 UT and was observed by Hinode, IRIS, SDO, and RHESSI. We analyze a bright kernel which produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and Hinode/EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We found that explosive evaporation was observed when the WL emission occurred, even though the intensity enhancement in hotter lines is quite weak. The temporal correlation of the WL emission, HXR peak, and evaporation flows indicate that the WL emission was produced by accelerated electrons. To understand the white light emission process, we calculated the energy flux deposited by non- thermal electrons (observed by RHESSI) and compared it to the dissipated energy estimated from a chromospheric line (Mg II triplet) observed by IRIS. The deposited energy flux from the non-thermal electrons is about 3 ~ 7.7 X 10^(10) erg cm^(-2) s^(-1) for a given low energy cut-off of 30 ~ 40 keV, assuming the thick target model. The energy flux estimated from the temperature changes in the chromosphere measured using the Mg II subordinate line is about 4.6 - 6.7 X 10(9) erg cm^(-2) s^(-1): ~6-22% of the deposited energy. This comparison of estimated energy fluxes implies that the continuum enhancement was directly produced by the non-thermal electrons.


Journal of Geophysical Research | 2016

Coronal electron density distributions estimated from CMEs, DH type II radio bursts, and polarized brightness measurements

Jae-Ok Lee; Yong-Jae Moon; Jin-Yi Lee; Kyoung-Sun Lee; R.-S. Kim

We determine coronal electron density distributions (CEDDs) by analyzing decahectometric (DH) type II observations under two assumptions. DH type II bursts are generated by either (1) shocks at the leading edges of coronal mass ejections (CMEs) or (2) CME shock-streamer interactions. Among 399 Wind/WAVES type II bursts (from 1997 to 2012) associated with SOHO/LASCO (Large Angle Spectroscopic COronagraph) CMEs, we select 11 limb events whose fundamental and second harmonic emission lanes are well identified. We determine the lowest frequencies of fundamental emission lanes and the heights of leading edges of their associated CMEs. We also determine the heights of CME shock-streamer interaction regions. The CEDDs are estimated by minimizing the root-mean-square error between the heights from the CME leading edges (or CME shock-streamer interaction regions) and DH type II bursts. We also estimate CEDDs of seven events using polarized brightness (pB) measurements. We find the following results. Under the first assumption, the average of estimated CEDDs from 3 to 20 Rs is about 5-fold Saitos model (NSaito(r)). Under the second assumption, the average of estimated CEDDs from 3 to 10 Rs is 1.5-fold NSaito(r). While the CEDDs obtained from pB measurements are significantly smaller than those based on the first assumption and CME flank regions without streamers, they are well consistent with those on the second assumption. Our results show that not only about 1-fold NSaito(r) is a proper CEDD for analyzing DH type II bursts but also CME shock-streamer interactions could be a plausible origin for generating DH type II bursts.


The Astrophysical Journal | 2014

MAGNETIC-RECONNECTION GENERATED SHOCK WAVES AS A DRIVER OF SOLAR SURGES

Heesu Yang; Jongchul Chae; Eun-Kyung Lim; Kyoung-Sun Lee; Hyungmin Park; Donguk Song; Kyuhyoun Cho

We found that a surge consists of multiple shock features. In our high-spatiotemporal spectroscopic observation of the surge, each shock is identified with the sudden appearance of an absorption feature at the blue wings of the Ca II 8542 A line and Hα line that gradually shifts to the red wings. The shock features overlap with one another with the time interval of 110 s, which is much shorter than the duration of each shock feature, 300-400 s. This finding suggests that the multiple shocks might not have originated from a train of sinusoidal waves generated by oscillations and flows in the photosphere. As we found the signature of the magnetic flux cancelations at the base of the surge, we conclude that the multiple shock waves in charge of the surge were generated by the magnetic reconnection that occurred in the low atmosphere in association with the flux cancelation.


The Astrophysical Journal | 2017

Study on Precursor Activity of the X1.6 Flare in the Great AR 12192 with SDO , IRIS , and Hinode

Yumi Bamba; Kyoung-Sun Lee; Shinsuke Imada; Kanya Kusano

The physical properties and its contribution to the onset of solar flare are still unclear although chromospheric brightening is considered a precursor phenomenon of flare. Many studies suggested that photospheric magnetic field changes cause destabilization of large-scale coronal structure. We aim to understand how a small photospheric change contributes to a flare and to reveal how the intermediary chromosphere behaves in the precursor phase. We analyzed the precursor brightening of the X1.6 flare on 2014 October 22 in the AR 12192 using the Interface Region Imaging Spectrograph (IRIS) and Hinode/EUV Imaging Spectrometer (EIS) data. We investigated a localized jet with the strong precursor brightening, and compared the intensity, Doppler velocity, and line width in C II, Mg II k, Si IV lines by IRIS and He II, Fe XII, Fe XV lines by Hinode/EIS. We also analyzed photospheric magnetic field and chromospheric/coronal structures using Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA). We found a significant blueshift (~ 100 km/s), which is related to the strong precursor brightening over a characteristic magnetic field structure, and the blueshift was observed at all the temperature. This might indicate that the flow is accelerated by Lorentz force. Moreover, the large-scale coronal loop that connects the foot-points of the flare ribbons was destabilized just after the precursor brightening with the blueshift. It suggests that magnetic reconnection locally occurred in the lower chromosphere and it triggered magnetic reconnection of the X1.6 flare in the corona.


The Astrophysical Journal | 2015

PHOTOSPHERIC ABUNDANCES OF POLAR JETS ON THE SUN OBSERVED BY HINODE

Kyoung-Sun Lee; David H. Brooks; Shinsuke Imada

Many jets are detected at X-ray wavelengths in the Suns polar regions, and the ejected plasma along the jets has been suggested to contribute mass to the fast solar wind. From in-situ measurements in the magnetosphere, it has been found that the fast solar wind has photospheric abundances while the slow solar wind has coronal abundances. Therefore, we investigated the abundances of polar jets to determine whether they are the same as that of the fast solar wind. For this study, we selected 22 jets in the polar region observed by Hinode/EIS (EUV Imaging Spectrometer) and XRT (X-Ray Telescope) simultaneously on 2007 November 1-3. We calculated the First Ionization Potential (FIP) bias factor from the ratio of the intensity between high (S) and low (Si, Fe) FIP elements using the EIS spectra. The values of the FIP bias factors for the polar jets are around 0.7-1.9, and 75


The Astrophysical Journal | 2018

Plasma Evolution within an Erupting Coronal Cavity

David M. Long; Louise K. Harra; S. A. Matthews; Harry Warren; Kyoung-Sun Lee; G. A. Doschek; Hirohisa Hara; Jack M. Jenkins

\%


The Astrophysical Journal | 2013

Spectroscopic Study of a Dark Lane and a Cool Loop in a Solar Limb Active Region by Hinode/EIS

Kyoung-Sun Lee; Shinsuke Imada; Y.-J. Moon; Jin-Yi Lee

of the values are in the range of 0.7-1.5, which indicates that they have photospheric abundances similar to the fast solar wind. The results are consistent with the reconnection jet model where photospheric plasma emerges and is rapidly ejected into the fast wind.


Archive | 2018

The Origin of the Solar Wind

Kyoung-Sun Lee; David H. Brooks; Shinsuke Imada

Coronal cavities have previously been observed associated with long-lived quiescent filaments and are thought to correspond to the associated magnetic flux rope. Although the standard flare model predicts a coronal cavity corresponding to the erupting flux rope, these have only been observed using broadband imaging data, restricting analysis to the plane-of-sky. We present a unique set of spectroscopic observations of an active region filament seen erupting at the solar limb in the extreme ultraviolet (EUV). The cavity erupted and expanded rapidly, with the change in rise phase contemporaneous with an increase in non-thermal electron energy flux of the associated flare. Hot and cool filamentary material was observed to rise with the erupting flux rope, disappearing suddenly as the cavity appeared. Although strongly blue-shifted plasma continued to be observed flowing from the apex of the erupting flux rope, this outflow soon ceased. These results indicate that the sudden injection of energy from the flare beneath forced the rapid eruption and expansion of the flux rope, driving strong plasma flows which resulted in the eruption of an under-dense filamentary flux rope.


Solar Physics | 2014

Dependence of Geomagnetic Storms on Their Associated Halo CME Parameters

Jae-Ok Lee; Yong-Jae Moon; Kyoung-Sun Lee; R.-S. Kim

We investigated a cool loop and a dark lane over a limb active region on 2007 March 14 using the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in the coronal spectral lines and is rooted on a bright point. We examined their electron densities, Doppler velocities, and nonthermal velocities as a function of distance from the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII, and Fe XIV spectra. We also compared the observed density scale heights with the calculated scale heights from each peak formation temperatures of the spectral lines under the hydrostatic equilibrium. We noted that the observed density scale heights of the cool loop are consistent with the calculated heights, with the exception of one observed cooler temperature; we also found that the observed scale heights of the dark lane are much lower than their calculated scale heights. The nonthermal velocity in the cool loop slightly decreases along the loop, while nonthermal velocity in the dark lane sharply falls off with height. Such a decrease in the nonthermal velocity may be explained by wave damping near the solar surface or by turbulence due to magnetic reconnection near the bright point.

Collaboration


Dive into the Kyoung-Sun Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyoko Watanabe

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

R.-S. Kim

Korea Astronomy and Space Science Institute

View shared research outputs
Top Co-Authors

Avatar

Sujin Kim

Korea Astronomy and Space Science Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge