Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyri Dunussi-Joannopoulos is active.

Publication


Featured researches published by Kyri Dunussi-Joannopoulos.


Journal of Immunology | 2007

IL-21 Has a Pathogenic Role in a Lupus-Prone Mouse Model and Its Blockade with IL-21R.Fc Reduces Disease Progression

Deborah Herber; Thomas P. Brown; Spencer C. Liang; Deborah A. Young; Mary Collins; Kyri Dunussi-Joannopoulos

Systemic lupus erythematosus is a complex autoimmune disease characterized by dysregulated interactions between autoreactive T and B lymphocytes and the development of anti-nuclear Abs. The recently described pleiotropic cytokine IL-21 has been shown to regulate B cell differentiation and function. IL-21 is produced by activated T lymphocytes and its interactions with IL-21R are required for isotype switching and differentiation of B cells into Ab-secreting cells. In this report, we studied the impact of blocking IL-21 on disease in the lupus-prone MRL-Faslpr mouse model. Mice treated for 10 wk with IL-21R.Fc fusion protein had reduced proteinuria, fewer IgG glomerular deposits, no glomerular basement membrane thickening, reduced levels of circulating dsDNA autoantibodies and total sera IgG1 and IgG2a, and reduced skin lesions and lymphadenopathy, compared with control mice. Also, treatment with IL-21R.Fc resulted in a reduced number of splenic T lymphocytes and altered splenic B lymphocyte ex vivo function. Our data show for the first time that IL-21 has a pathogenic role in the MRL-Faslpr lupus model by impacting B cell function and regulating the production of pathogenic autoantibodies. From a clinical standpoint, these results suggest that blocking IL-21 in systemic lupus erythematosus patients may represent a promising novel therapeutic approach.


Journal of Biological Chemistry | 2007

Identification of an Interleukin 17F/17A Heterodimer in Activated Human CD4+ T Cells

Jill F. Wright; Yongjing Guo; Amira Quazi; Deborah Luxenberg; Frann Bennett; John F. Ross; Yongchang Qiu; Matthew J. Whitters; Kathleen N. Tomkinson; Kyri Dunussi-Joannopoulos; Beatriz M. Carreno; Mary Collins; Neil M. Wolfman

IL-17F and IL-17A are members of the IL-17 pro-inflammatory cytokine family. IL-17A has been implicated in the pathogenesis of autoimmune diseases. IL-17F is a disulfide-linked dimer that contains a cysteine-knot motif. We hypothesized that IL-17F and IL-17A could form a heterodimer due to their sequence homology and overlapping pattern of expression. We evaluated the structure of recombinant IL-17F and IL-17A proteins, as well as that of natural IL-17F and IL-17A derived from activated human CD4+ T cells, by enzyme-linked immunosorbent assay, immunoprecipitation followed by Western blotting, and mass spectrometry. We find that both IL-17F and IL-17A can form both homodimeric and heterodimeric proteins when expressed in a recombinant system, and that all forms of the recombinant proteins have in vitro functional activity. Furthermore, we find that in addition to the homodimers of IL-17F and IL-17A, activated human CD4+ T cells also produce the IL-17F/IL-17A heterodimer. These data suggest that the IL-17F/IL-17A heterodimer may contribute to the T cell-mediated immune responses.


Journal of Immunology | 2008

The Human IL-17F/IL-17A Heterodimeric Cytokine Signals through the IL-17RA/IL-17RC Receptor Complex

Jill F. Wright; Frann Bennett; Bilian Li; Jonathan Brooks; Deborah Luxenberg; Matthew J. Whitters; Kathleen N. Tomkinson; Lori Fitz; Neil M. Wolfman; Mary Collins; Kyri Dunussi-Joannopoulos; Moitreyee Chatterjee-Kishore; Beatriz M. Carreno

IL-17A and IL-17F, produced by the Th17 CD4+ T cell lineage, have been linked to a variety of inflammatory and autoimmune conditions. We recently reported that activated human CD4+ T cells produce not only IL-17A and IL-17F homodimers but also an IL-17F/IL-17A heterodimeric cytokine. All three cytokines can induce chemokine secretion from bronchial epithelial cells, albeit with different potencies. In this study, we used small interfering RNA and Abs to IL-17RA and IL-17RC to demonstrate that heterodimeric IL-17F/IL-17A cytokine activity is dependent on the IL-17RA/IL-17RC receptor complex. Interestingly, surface plasmon resonance studies indicate that the three cytokines bind to IL-17RC with comparable affinities, whereas they bind to IL-17RA with different affinities. Thus, we evaluated the effect of the soluble receptors on cytokine activity and we find that soluble receptors exhibit preferential cytokine blockade. IL-17A activity is inhibited by IL-17RA, IL-17F is inhibited by IL-17RC, and a combination of soluble IL-17RA/IL-17RC receptors is required for inhibition of the IL-17F/IL-17A activity. Altogether, these results indicate that human IL-17F/IL-17A cytokine can bind and signal through the same receptor complex as human IL-17F and IL-17A. However, the distinct affinities of the receptor components for IL-17A, IL-17F, and IL-17F/IL-17A heterodimer can be exploited to differentially affect the activity of these cytokines.


Journal of Investigative Dermatology | 2011

Inter-Regulation of Th17 Cytokines and the IL-36 Cytokines In Vitro and In Vivo: Implications in Psoriasis Pathogenesis

Yijun Carrier; Hak-Ling Ma; Hilda E. Ramon; Lee Napierata; Clayton Small; Margot O'Toole; Deborah A. Young; Lynette A. Fouser; Cheryl Nickerson-Nutter; Mary Collins; Kyri Dunussi-Joannopoulos; Quintus G. Medley

Accumulating evidence indicates that IL-1 family members and Th17 cytokines have a pathogenic role in psoriasis. We investigated the regulatory interactions of the IL-1-like IL-36 cytokine family and the Th17 cytokines in the context of skin inflammation. We observed increased gene expression of all three IL-36 cytokines in a Th17-dominant psoriasis-like animal model. The induction was downregulated by neutralizing IL-22. Expression of the IL-36s was also induced in cultured primary human keratinocytes (KC) by IL-17A and tumor necrosis factor (TNF)-α, and IL-22 synergized with IL-17A and TNF-α. Furthermore, the IL-36s directly induced their own expression and the production of proinflammatory mediators (TNF-α, IL-6, IL-8) in KC. These functions were markedly enhanced with the addition of IL-17A or TNF-α to the cultures. Similarly, IL-36α and IL-36β augmented IL-17A-mediated induction of antibacterial peptides. Finally, we show that the increased gene expression of IL-36 correlated with Th17 cytokines in the lesions of psoriatic patients. Our results indicate that the IL-36 cytokines are not only regulated by Th17 cytokines, but that they themselves can regulate the expression and enhance the function of Th17 cytokines. We propose that a feedback loop between the IL-36 and Th17 cytokines is involved in driving cytokine expression in psoriatic tissues.


Journal of Immunology | 2012

IL-22 Is Required for Imiquimod-Induced Psoriasiform Skin Inflammation in Mice

Astrid Van Belle; Magali de Heusch; Muriel M. Lemaire; Emilie Hendrickx; Guy Warnier; Kyri Dunussi-Joannopoulos; Lynette A. Fouser; Jean-Christophe Renauld; Laure Dumoutier

Psoriasis is a common chronic autoimmune skin disease of unknown cause that involves dysregulated interplay between immune cells and keratinocytes. IL-22 is a cytokine produced by the TH1, TH17, and TH22 subsets that are functionally implicated in the psoriatic pathology. We assessed the role of IL-22 in a mouse model where psoriasiform skin inflammation is triggered by topical application of the TLR7/8 agonist imiquimod. At the macroscopic level, scaly skin lesions induced by daily applications of imiquimod in wild-type mice were almost totally absent in IL-22–deficient mice or in mice treated with a blocking anti–IL-22 Ab. At the microscopic level, IL-22–deficient mice showed a dramatic decrease in the development of pustules and a partial decrease in acanthosis. At the molecular level, the absence or inhibition of IL-22 strongly decreased the expression of chemotactic factors such as CCL3 and CXCL3 and of biomarkers such as S100A8, S100A7, and keratin 14, which reflect the antimicrobial and hyperproliferative responses of keratinocytes. IL-22 also played a major role in neutrophil infiltration after imiquimod treatment. IL-23 was required for IL-22 production, and γδ TCR lymphocytes represented the major source of IL-22 in lymph nodes from imiquimod-treated mice. However, T cells were not absolutely required for IL-22 production because imiquimod-induced IL-22 expression in the skin is still preserved in Rag2−/− mice. Taken together, our data show that IL-22 is required for psoriasis-like lesions in the mouse imiquimod model and is produced by both T cells and innate immune cells.


Diabetes | 2008

Targeting CD22 Reprograms B-Cells and Reverses Autoimmune Diabetes

Paolo Fiorina; Andrea Vergani; Shirine Dada; Mollie Jurewicz; Masie Wong; Kenneth Law; Erxi Wu; Ze Tian; Reza Abdi; Indira Guleria; Scott J. Rodig; Kyri Dunussi-Joannopoulos; Jeffrey A. Bluestone; Mohamed H. Sayegh

OBJECTIVES—To investigate a B-cell–depleting strategy to reverse diabetes in naïve NOD mice. RESEARCH DESIGN AND METHODS—We targeted the CD22 receptor on B-cells of naïve NOD mice to deplete and reprogram B-cells to effectively reverse autoimmune diabetes. RESULTS—Anti-CD22/cal monoclonal antibody (mAb) therapy resulted in early and prolonged B-cell depletion and delayed disease in pre-diabetic mice. Importantly, when new-onset hyperglycemic mice were treated with the anti-CD22/cal mAb, 100% of B-cell–depleted mice became normoglycemic by 2 days, and 70% of them maintained a state of long-term normoglycemia. Early therapy after onset of hyperglycemia and complete B-cell depletion are essential for optimal efficacy. Treated mice showed an increase in percentage of regulatory T-cells in islets and pancreatic lymph nodes and a diminished immune response to islet peptides in vitro. Transcriptome analysis of reemerging B-cells showed significant changes of a set of proinflammatory genes. Functionally, reemerging B-cells failed to present autoantigen and prevented diabetes when cotransferred with autoreactive CD4+ T-cells into NOD.SCID hosts. CONCLUSIONS—Targeting CD22 depletes and reprograms B-cells and reverses autoimmune diabetes, thereby providing a blueprint for development of novel therapies to cure autoimmune diabetes.


American Journal of Respiratory and Critical Care Medicine | 2011

GM-CSF in the Lung Protects against Lethal Influenza Infection

Fang Fang Huang; Peter F. Barnes; Yan Feng; Ruben O. Donis; Zissis C. Chroneos; Steven Idell; Timothy Craig Allen; Daniel R. Perez; Jeffrey A. Whitsett; Kyri Dunussi-Joannopoulos; Homayoun Shams

RATIONALE Alveolar macrophages contribute to host defenses against influenza in animal models. Enhancing alveolar macrophage function may contribute to protection against influenza. OBJECTIVES To determine if increased expression of granulocyte/macrophage colony-stimulating factor (GM-CSF) in the lung increases resistance to influenza. METHODS Wild-type mice and transgenic mice that expressed GM-CSF in the lung were infected with influenza virus, and lung pathology, weight loss, and mortality were measured. We also administered GM-CSF to the lungs of wild-type mice that were infected with influenza virus. MEASUREMENTS AND MAIN RESULTS Wild-type mice all died after infection with different strains of influenza virus, but all transgenic mice expressing GM-CSF in the lungs survived. The latter also had greatly reduced weight loss and lung injury, and showed histologic evidence of a rapid host inflammatory response that controlled infection. The resistance of transgenic mice to influenza was abrogated by elimination of alveolar phagocytes, but not by depletion of T cells, B cells, or neutrophils. Transgenic mice had far more alveolar macrophages than did wild-type mice, and they were more resistant to influenza-induced apoptosis. Delivery of intranasal GM-CSF to wild-type mice also conferred resistance to influenza. CONCLUSIONS GM-CSF confers resistance to influenza by enhancing innate immune mechanisms that depend on alveolar macrophages. Pulmonary delivery of this cytokine has the potential to reduce the morbidity and mortality due to influenza virus.


Journal of Immunology | 2012

IL-21 Receptor Is Required for the Systemic Accumulation of Activated B and T Lymphocytes in MRL/MpJ-Fas lpr/lpr /J Mice

Andrew L. Rankin; Heath Guay; Deborah Herber; Sarah Bertino; Tatyana A. Duzanski; Yijun Carrier; Sean Keegan; Mayra Senices; Nancy Stedman; Mark Ryan; Laird Bloom; Quintus G. Medley; Mary Collins; Cheryl Nickerson-Nutter; Joe Craft; Deborah Young; Kyri Dunussi-Joannopoulos

MRL/MpJ-Faslpr/lpr/J (MRLlpr) mice develop lupus-like disease manifestations in an IL-21–dependent manner. IL-21 is a pleiotropic cytokine that can influence the activation, differentiation, and expansion of B and T cell effector subsets. Notably, autoreactive CD4+ T and B cells spontaneously accumulate in MRLlpr mice and mediate disease pathogenesis. We sought to identify the particular lymphocyte effector subsets regulated by IL-21 in the context of systemic autoimmunity and, thus, generated MRLlpr mice deficient in IL-21R (MRLlpr.IL-21R−/−). Lymphadenopathy and splenomegaly, which are characteristic traits of the MRLlpr model were significantly reduced in the absence of IL-21R, suggesting that immune activation was likewise decreased. Indeed, spontaneous germinal center formation and plasma cell accumulation were absent in IL-21R–deficient MRLlpr mice. Correspondingly, we observed a significant reduction in autoantibody titers. Activated CD4+ CD44+ CD62Llo T cells also failed to accumulate, and CD4+ Th cell differentiation was impaired, as evidenced by a significant reduction in CD4+ T cells that produced the pronephritogenic cytokine IFN-γ. T extrafollicular helper cells are a recently described subset of activated CD4+ T cells that function as the primary inducers of autoantibody production in MRLlpr mice. Importantly, we demonstrated that T extrafollicular helper cells are dependent on IL-21R for their generation. Together, our data highlighted the novel observation that IL-21 is a critical regulator of multiple pathogenic B and T cell effector subsets in MRLlpr mice.


PLOS Pathogens | 2013

B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

Lee Kozakiewicz; Yong Chen; Jiayong Xu; Yanhua Wang; Kyri Dunussi-Joannopoulos; Qinglin Ou; JoAnne L. Flynn; Steven A. Porcelli; William R. Jacobs; John Chan

We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization.


Journal of Immunology | 2013

Selective Inhibition of BTK Prevents Murine Lupus and Antibody-Mediated Glomerulonephritis

Andrew L. Rankin; Nilufer Seth; Sean Keegan; Tatyana Andreyeva; Timothy A. Cook; Jason Edmonds; Nagappan Mathialagan; Micah J. Benson; Jameel Syed; Yutian Zhan; Stephen Benoit; Joy S. Miyashiro; Nancy Wood; Shashi Mohan; Elena Peeva; Shashi K. Ramaiah; Dean Messing; Bruce L. Homer; Kyri Dunussi-Joannopoulos; Cheryl Nickerson-Nutter; Mark E. Schnute; John Douhan

Autoantibody production and immune complex deposition within the kidney promote renal disease in patients with lupus nephritis. Thus, therapeutics that inhibit these pathways may be efficacious in the treatment of systemic lupus erythematosus. Bruton’s tyrosine kinase (BTK) is a critical signaling component of both BCR and FcR signaling. We sought to assess the efficacy of inhibiting BTK in the development of lupus-like disease, and in this article describe (R)-5-amino-1-(1-cyanopiperidin-3-yl)-3-(4-[2,4-difluorophenoxy]phenyl)-1H-pyrazole-4-carboxamide (PF-06250112), a novel highly selective and potent BTK inhibitor. We demonstrate in vitro that PF-06250112 inhibits both BCR-mediated signaling and proliferation, as well as FcR-mediated activation. To assess the therapeutic impact of BTK inhibition, we treated aged NZBxW_F1 mice with PF-06250112 and demonstrate that PF-06250112 significantly limits the spontaneous accumulation of splenic germinal center B cells and plasma cells. Correspondingly, anti-dsDNA and autoantibody levels were reduced in a dose-dependent manner. Moreover, administration of PF-06250112 prevented the development of proteinuria and improved glomerular pathology scores in all treatment groups. Strikingly, this therapeutic effect could occur with only a modest reduction observed in anti-dsDNA titers, implying a critical role for BTK signaling in disease pathogenesis beyond inhibition of autoantibody production. We subsequently demonstrate that PF-06250112 prevents proteinuria in an FcR-dependent, Ab-mediated model of glomerulonephritis. Importantly, these results highlight that BTK inhibition potently limits the development of glomerulonephritis by impacting both cell- and effector molecule-mediated pathways. These data provide support for evaluating the efficacy of BTK inhibition in systemic lupus erythematosus patients.

Collaboration


Dive into the Kyri Dunussi-Joannopoulos's collaboration.

Researchain Logo
Decentralizing Knowledge