Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyung-Ju Choi is active.

Publication


Featured researches published by Kyung-Ju Choi.


Gene Therapy | 2006

Concurrent delivery of GM-CSF and B7-1 using an oncolytic adenovirus elicits potent antitumor effect

Kyung-Ju Choi; Joo Hang Kim; Young Sook Lee; Joo-Hang Kim; Beom-Seok Suh; H.R. Kim; Sungae Cho; Joo Hyuk Sohn; Gwi Eon Kim; Chae-Ok Yun

Oncolytic adenoviral vectors are currently being developed as biologic anticancer agents. Coupling the lytic function of an oncolytic adenovirus (Ad) with its ability as a transgene delivery system represents a powerful extension of this methodology. A clear advantage is the amplification of a therapeutic gene, as replicating vectors would be able to infect and deliver the gene of interest to neighboring cells. Granulocyte–macrophage colony-stimulating factor (GM-CSF) is one of the most potent stimulators of a specific and long-lasting antitumor immunity and its important role in the maturation of antigen-presenting cells to induce T-cell activation has been well documented. Similarly, the B7 family has also been shown to play an integral role in mediating an antitumor response. Most tumor cells, however, lack the expression of these costimulatory molecules on their surface, thus escaping immune system recognition. To increase the antitumor effect of an oncolytic Ad, we have generated an E1B 55 kDa-deleted oncolytic adenoviral vector, YKL-GB, that expresses both GM-CSF and B7-1. The therapeutic efficacy of YKL-GB Ad was evaluated in immunocompetent mice bearing murine melanoma B16-F10 tumors. Significant inhibition of tumor growth was seen in mice treated with YKL-GB compared to those treated with the analogous vector, YKL-1. Moreover, YKL-GB oncolytic Ad demonstrated enhanced antitumor activity and higher incidences of tumor regression compared to a replication-incompetent Ad, dl-GB, which coexpresses GM-CSF and B7-1. Localized GM-CSF and B7-1 gene transfer also conferred long-lasting immunity against a tumor re-challenge. To establish that the observed antitumor effect is associated with the generation of a tumor-specific immune response, we carried out interferon-γ enzyme-linked immune spot assay. We observed that YKL-GB induced significantly higher immune cell activation than YKL-1. Furthermore, immunohistochemical studies demonstrated robust dendritic cells and CD4+/CD8+ T-cell infiltration in these mice compared to the YKL-1-treated groups. In agreement with these results, splenocytes from tumor-bearing mice treated with YKL-GB expressed high levels of the costimulatory and activation molecules. These findings demonstrate the effectiveness of enhancing the immune response against tumors with an oncolytic Ad expressing both GM-CSF and B7-1 and provide a potential therapeutic strategy for the management of neoplasia.


Biomaterials | 2011

Molecular beacon-based bioimaging of multiple microRNAs during myogenesis.

Won Jun Kang; Ye Lim Cho; Ju Ri Chae; Jong Doo Lee; Kyung-Ju Choi; Soonhag Kim

MicroRNAs (miRNAs, miR) are associated with multiple cellular processes and diseases. Here, we designed fluorescent DNA probes composed of stem loop-structured DNA complementary to miRNAs and fluorophore-quencher pairs [molecular beacon (MB)] to simultaneously monitor the biogenesis of miR-206 and miR-26a, which are highly expressed during myogenic differentiation. C2C12 cells were transfected with an MB targeting miR-26a and containing a 6-FAM-BHQ1 pair (miRNA-26a MB) or an MB targeting miR-206 with a Texas Red-BHQ2 pair (miRNA-206 MB). In vitro and in vivo fluorescence analysis revealed that, only in differentiated single C2C12 cell, significantly increased fluorescence signals of miRNA-26a MB, miRNA-206 MB or simultaneous incubation of both beacons were detected due to the hybridization of miR-206 or miR-26a with their respective beacons, resulting in activation of fluorescence. Our MB-based miRNA imaging system may serve as a new imaging probe for monitoring multiple miRNAs during various cellular or disease processes associated with miRNAs.


Biomaterials | 2011

A multimodal nanoparticle-based cancer imaging probe simultaneously targeting nucleolin, integrin αvβ3 and tenascin-C proteins.

Hae Young Ko; Kyung-Ju Choi; Chang Hyun Lee; Soonhag Kim

Molecular imaging of cancers has been characterized based on the sensitivity and selectivity of a single cancer probe targeting a cancer biomarker of a specific cancer cell line. Here, we designed a multimodal nanoparticle-based Simultaneously Multiple Aptamers and RGD Targeting (SMART) cancer probe targeting multiple cancer biomarkers to enhance the specificity and signal sensitivity for various cancers. Transmission electron microscopy revealed that the multimodal SMART cancer probe was spheric and well dispersed. Fluorescence, radioisotope, and magnetic resonance analysis demonstrated that the SMART cancer probe simultaneously targeting the nucleolin, integrin α(v)β(3) and Tnc proteins had dramatically enhanced specificity and signal intensity when used to target cancers from C6, NPA, DU145, HeLa and A549 cells when compared with single cancer probes conjugated with AS1411, RGD or TTA1 targeting a single cancer biomarker. The results demonstrated that the SMART cancer probe will be useful for the diagnosis of different cancers as a cancer master probe.


Molecular Therapy | 2011

Optimizing DC Vaccination by Combination With Oncolytic Adenovirus Coexpressing IL-12 and GM-CSF

Song-Nan Zhang; Il-Kyu Choi; Jing-Hua Huang; Ji Young Yoo; Kyung-Ju Choi; Chae-Ok Yun

Dendritic cell (DC)-based vaccination is a promising strategy for cancer immunotherapy. However, clinical trials have indicated that immunosuppressive microenvironments induced by tumors profoundly suppress antitumor immunity and inhibit vaccine efficacy, resulting in insufficient reduction of tumor burdens. To overcome these obstacles and enhance the efficiency of DC vaccination, we generated interleukin (IL)-12- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-coexpressing oncolytic adenovirus (Ad-ΔB7/IL12/GMCSF) as suitable therapeutic adjuvant to eliminate immune suppression and promote DC function. By treating tumors with Ad-ΔB7/IL12/GMCSF prior to DC vaccination, DCs elicited greater antitumor effects than in response to either treatment alone. DC migration to draining lymph nodes (DLNs) dramatically increased in mice treated with the combination therapy. This result was associated with upregulation of CC-chemokine ligand 21 (CCL21+) lymphatics in tumors treated with Ad-ΔB7/IL12/GMCSF. Moreover, the proportion of CD4+CD25+ T-cells and vascular endothelial growth factor (VEGF) expression was decreased in mice treated with the combination therapy. Furthermore, combination therapy using immature DCs also showed effective antitumor effects when combined with Ad-ΔB7/IL12/GMCSF. The combination therapy had a remarkable therapeutic efficacy on large tumors. Taken together, oncolytic adenovirus coexpressing IL-12 and GM-CSF in combination with DC vaccination has synergistic antitumor effects and can act as a potent adjuvant for promoting and optimizing DC vaccination.


Gene Therapy | 2012

Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF

Kyung-Ju Choi; Song-Nan Zhang; Il-Kyu Choi; Jinhwan Kim; Chae-Ok Yun

Interleukin (IL)-12 and granulocyte-monocyte colony-stimulating factor (GM-CSF) have recently been used as immunotherapeutic agents in cancer gene therapy. IL-12 and GM-CSF have differential roles in the antitumor immune response, as IL-12 targets T, NK and natural killer T (NKT) cells and GM-CSF principally targets antigen-presenting cells (APCs). To strengthen the therapeutic efficacy of these two cytokines, we generated an oncolytic adenovirus (Ad), Ad-ΔB7/IL12/GMCSF, coexpressing IL-12 and GM-CSF. Using a murine B16-F10 syngeneic tumor model, we show that Ad-ΔB7/IL12/GMCSF promoted antitumor responses and increased survival compared with an oncolytic Ad expressing IL-12 or GM-CSF alone (Ad-ΔB7/IL12 or Ad-ΔB7/GMCSF, respectively). By measuring cytotoxic T lymphocyte activity and interferon-γ production, we show that the enhanced therapeutic effect was mediated by the induction of immune cell cytotoxicity. In situ delivery of Ad-ΔB7/IL12/GMCSF resulted in massive infiltration of CD4+ T cells, CD8+ T cells, NK cells and CD86+ APCs into the tissue surrounding the necrotic area of the tumor. Moreover, GM-CSF effectively promoted antitumor immune memory, which was significantly augmented by IL-12. Lastly, IL12-expressing oncolytic Ads prevented tumor-induced thymic atrophy and was associated with reduced apoptosis and increased proliferation in the thymus. Taken together, these data demonstrate that an oncolytic Ad coexpressing IL-12 and GM-CSF is a potential therapeutic tool for the treatment of cancer.


Biological & Pharmaceutical Bulletin | 2015

Molecular Targeted Therapy for Hepatocellular Carcinoma: Present Status and Future Directions.

Kyung-Ju Choi; In Hye Baik; Sang-Kyu Ye; Yun-Han Lee

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most lethal neoplasm, causing an estimated 700000 deaths annually. Currently HCC has only one systemic molecular targeted therapy, the multi-kinase inhibitor, sorafenib. The standard-of-care for advanced liver cancer is limited because sorafenib can expand the median life expectancy of patients for only 1 year. Thus there is an urgent need to develop a novel molecular targeted therapy to improve therapeutic outcomes for HCC. HCCs are phenotypically and genetically heterogeneous tumors driven by diverse molecular mechanisms. However, HCCs exhibit certain common traits selected through genetic and epigenetic alterations. The identification of common molecular alterations may provide an opportunity to develop more effective anticancer treatment through targeted therapy. Recent studies in liver cancer biology have revealed a limited number of molecular targets responsible for initiating and maintaining dysregulated cell proliferation, including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor (PDGFR), c-mesenchymal-epithelial transition factor-1 (c-Met), mammalian target of rapamycin (mTOR) and histone deacetylases (HDACs). New treatments involving inhibitors targeting several of these critical pathways are in development. This review describes the current understanding of target pathways, ongoing clinical trials using HCC-targeted agents, and future directions in the treatment of HCC.


Biomaterials | 2016

Theragnosis-based combined cancer therapy using doxorubicin-conjugated microRNA-221 molecular beacon

Jonghwan Lee; Kyung-Ju Choi; Sung Ung Moon; Soonhag Kim

Recently, microRNA (miRNA or miR) has emerged as a new cancer biomarker because of its high expression level in various cancer types and its role in the control of tumor suppressor genes. In cancer studies, molecular imaging and treatment based on target cancer markers have been combined to facilitate simultaneous cancer diagnosis and therapy. In this study, for combined therapy with diagnosis of cancer, we developed a doxorubicin-conjugated miR-221 molecular beacon (miR-221 DOXO MB) in a single platform composed of three different nucleotides: miR-221 binding sequence, black hole quencher 1 (BHQ1), and doxorubicin binding site. Imaging of endogenous miR-221 was achieved by specific hybridization between miR-221 and the miR-221 binding site in miR-221 DOXO MB. The presence of miR-221 triggered detachment of the quencher oligo and subsequent activation of a fluorescent signal of miR-221 DOXO MB. Simultaneous cancer therapy in C6 astrocytoma cells and nude mice was achieved by inhibition of miRNA-221 function that downregulates tumor suppressor genes. The detection of miR-221 expression and inhibition of miR-221 function by miR-221 DOXO MB provide the feasibility as a cancer theragnostic probe. Furthermore, a cytotoxic effect was induced by unloading of doxorubicin intercalated into miR-221 DOXO MB inside cells. Loss of miR-221 function and cytotoxicity induced by the miR-221 DOXO MB provides combined therapeutic efficacy against cancers. This method could be used as a new theragnostic probe with enhanced therapy to detect and inhibit many cancer-related miRNAs.


International Journal of Hyperthermia | 2015

Electro-hyperthermia inhibits glioma tumorigenicity through the induction of E2F1-mediated apoptosis

Jihye Cha; Tae-Won Jeon; Chang Geol Lee; Sang Taek Oh; Hee-Beom Yang; Kyung-Ju Choi; Daekwan Seo; Ina Yun; In Hye Baik; Kyung Ran Park; Young Nyun Park; Yun-Han Lee

Abstract Purpose: Modulated electro-hyperthermia (mEHT), also known as oncothermia, shows remarkable treatment efficacies for various types of tumours, including glioma. The aim of the present study was to investigate the molecular mechanism underlying phenotypic changes in oncothermic cancer cells. Materials and methods: U87-MG and A172 human glioma cells were exposed to mEHT (42 °C/60 min) three times with a 2-day interval and subsequently tested for growth inhibition using MTS, FACS and microscopic analysis. To obtain insights into the molecular changes in response to mEHT, global changes in gene expression were examined using RNA sequencing. For in vivo evaluation of mEHT, we used U87-MG glioma xenografts grown in nude mice. Results: mEHT inhibited glioma cell growth through the strong induction of apoptosis. The transcriptomic analysis of differential gene expression under mEHT showed that the anti-proliferative effects were induced through a subset of molecular alterations, including the up-regulation of E2F1 and CPSF2 and the down-regulation of ADAR and PSAT1. Subsequent Western blotting revealed that mEHT increased the levels of E2F1 and p53 and decreased the level of PARP-1, accelerating apoptotic signalling in glioma cells. mEHT significantly suppressed the growth of human glioma xenografts in nude mice. We also observed that mEHT dramatically reduced the portion of CD133+ glioma stem cell population and suppressed cancer cell migration and sphere formation. Conclusions: These findings suggest that mEHT suppresses glioma cell proliferation and mobility through the induction of E2F1-mediated apoptosis and might be an effective treatment for eradicating brain tumours.


Cancer Research | 2012

Abstract 4393: Optimizing DC vaccination by combination with oncolytic adenovirus coexpressing IL-12 and GM-CSF

Song-Nan Zhang; Il-Kyu Choi; Jing-Hua Huang; Ji Young Yoo; Kyung-Ju Choi; Chae-Ok Yun

Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL Dendritic cell (DC)-based vaccination is a promising strategy for cancer immunotherapy. However, clinical trials have indicated that immunosuppressive microenvironments induced by tumors profoundly suppress antitumor immunity and inhibit vaccine efficacy, resulting in insufficient reduction of tumor burdens. To overcome these obstacles and enhance the efficiency of DC vaccination, we generated IL-12- and GM-CSF-coexpressing oncolytic adenovirus (Ad-αB7/IL12/GMCSF) as suitable therapeutic adjuvant to eliminate immune suppression and promote DC function. By treating tumors with Ad-αB7/IL12/GMCSF prior to DC vaccination, DCs elicited greater antitumor effects than in response to either treatment alone. DC migration to draining lymph nodes (DLNs) dramatically increased in mice treated with the combination therapy. This result was associated with upregulation of CCL21+ lymphatics in tumors treated with Ad-αB7/IL12/GMCSF. Moreover, the proportion of CD4+CD25+ T cells and VEGF expression was decreased in mice treated with the combination therapy. Furthermore, combination therapy using immature DCs also showed effective antitumor effects when combined with Ad-αB7/IL12/GMCSF. The combination therapy had a remarkable therapeutic efficacy on large tumors. Taken together, oncolytic adenovirus coexpressing IL-12 and GM-CSF in combination with DC vaccination has synergistic antitumor effects and can act as a potent adjuvant for promoting and optimizing DC vaccination. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 4393. doi:1538-7445.AM2012-4393


Chemical Communications | 2015

Sperm DNA-mediated reduction of nonspecific fluorescence during cellular imaging with quantum dots

Jonghwan Lee; Kyung-Ju Choi; Youngsok Choi; Bahy A. Ali; Abdulaziz A. Al-Khedhairy; Soonhag Kim

Collaboration


Dive into the Kyung-Ju Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge