Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyung-Mee Moon is active.

Publication


Featured researches published by Kyung-Mee Moon.


Nucleic Acids Research | 2012

Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress

Jean-Philippe Gagné; Émilie Pic; Maxim Isabelle; Jana Krietsch; Chantal Éthier; Éric Paquet; Isabelle Kelly; Michel Boutin; Kyung-Mee Moon; Leonard J. Foster; Guy G. Poirier

Upon DNA damage induction, DNA-dependent poly(ADP-ribose) polymerases (PARPs) synthesize an anionic poly(ADP-ribose) (pADPr) scaffold to which several proteins bind with the subsequent formation of pADPr-associated multiprotein complexes. We have used a combination of affinity-purification methods and proteomics approaches to isolate these complexes and assess protein dynamics with respect to pADPr metabolism. As a first approach, we developed a substrate trapping strategy by which we demonstrate that a catalytically inactive Poly(ADP-ribose) glycohydrolase (PARG) mutant can act as a physiologically selective bait for the isolation of specific pADPr-binding proteins through its macrodomain-like domain. In addition to antibody-mediated affinity-purification methods, we used a pADPr macrodomain affinity resin to recover pADPr-binding proteins and their complexes. Second, we designed a time course experiment to explore the changes in the composition of pADPr-containing multiprotein complexes in response to alkylating DNA damage-mediated PARP activation. Spectral count clustering based on GeLC-MS/MS analysis was complemented with further analyses using high precision quantitative proteomics through isobaric tag for relative and absolute quantitation (iTRAQ)- and Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics. Here, we present a valuable resource in the interpretation of systems biology of the DNA damage response network in the context of poly(ADP-ribosyl)ation and provide a basis for subsequent investigations of pADPr-binding protein candidates.


Genome Biology | 2012

Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera)

Robert Parker; M. Marta Guarna; Andony Melathopoulos; Kyung-Mee Moon; Rick White; Elizabeth Huxter; Stephen F. Pernal; Leonard J. Foster

BackgroundDisease is a major factor driving the evolution of many organisms. In honey bees, selection for social behavioral responses is the primary adaptive process facilitating disease resistance. One such process, hygienic behavior, enables bees to resist multiple diseases, including the damaging parasitic mite Varroa destructor. The genetic elements and biochemical factors that drive the expression of these adaptations are currently unknown. Proteomics provides a tool to identify proteins that control behavioral processes, and these proteins can be used as biomarkers to aid identification of disease tolerant colonies.ResultsWe sampled a large cohort of commercial queen lineages, recording overall mite infestation, hygiene, and the specific hygienic response to V. destructor. We performed proteome-wide correlation analyses in larval integument and adult antennae, identifying several proteins highly predictive of behavior and reduced hive infestation. In the larva, response to wounding was identified as a key adaptive process leading to reduced infestation, and chitin biosynthesis and immune responses appear to represent important disease resistant adaptations. The speed of hygienic behavior may be underpinned by changes in the antenna proteome, and chemosensory and neurological processes could also provide specificity for detection of V. destructor in antennae.ConclusionsOur results provide, for the first time, some insight into how complex behavioural adaptations manifest in the proteome of honey bees. The most important biochemical correlations provide clues as to the underlying molecular mechanisms of social and innate immunity of honey bees. Such changes are indicative of potential divergence in processes controlling the hive-worker maturation.


Vaccine | 2015

Outer membrane proteins preferentially load MHC class II peptides: Implications for a Chlamydia trachomatis T cell vaccine

Karuna P. Karunakaran; Hong Yu; Xiaozhou Jiang; Queenie Chan; Kyung-Mee Moon; Leonard J. Foster; Robert C. Brunham

CD4 T cell immune responses such as interferon-γ and tumor necrosis factor-α secretion are necessary for Chlamydia immunity. We used an immunoproteomic approach in which Chlamydia trachomatis and Chlamydia muridarum-derived peptides presented by MHC class II molecules on the surface of infected dendritic cells (DCs) were identified by tandem mass spectrometry using bone marrow derived DCs (BMDCs) from mice of different MHC background. We first compared the C. muridarum immunoproteome in C3H mice to that previously identified in C57BL/6 mice. Fourteen MHC class II binding peptides from 11 Chlamydia proteins were identified from C3H infected BMDCs. Two C. muridarum proteins overlapped between C3H and C57B/6 mice and both were polymorphic membrane proteins (Pmps) which presented distinct class II binding peptides. Next we studied DCs from C57BL/6 mice infected with the human strain, C. trachomatis serovar D. Sixty MHC class II binding peptides derived from 27 C. trachomatis proteins were identified. Nine proteins were orthologous T cell antigens between C. trachomatis and C. muridarum and 2 of the nine were Pmps which generated MHC class II binding epitopes at distinct sequences within the proteins. As determined by antigen specific splenocyte responses outer membrane proteins PmpF, -G and -H and the major outer membrane protein (MOMP) were antigenic in mice previously infected with C. muridarum or C. trachomatis. Furthermore a recombinant protein vaccine consisting of the four Pmps (PmpEFGH) with MOMP formulated with a Th1 polarizing adjuvant significantly accelerated (p<0.001) clearance in the C57BL/6 mice C. trachomatis transcervical infection model. We conclude that Chlamydia outer membrane proteins are important T cell antigens useful in the development of a C. trachomatis subunit vaccine.


PLOS Genetics | 2015

hnRNP K coordinates transcriptional silencing by SETDB1 in embryonic stem cells.

Peter J. Thompson; Vered Dulberg; Kyung-Mee Moon; Leonard J. Foster; Carol Chen; Mohammad M. Karimi; Matthew C. Lorincz

Retrotransposition of endogenous retroviruses (ERVs) poses a substantial threat to genome stability. Transcriptional silencing of a subset of these parasitic elements in early mouse embryonic and germ cell development is dependent upon the lysine methyltransferase SETDB1, which deposits H3K9 trimethylation (H3K9me3) and the co-repressor KAP1, which binds SETDB1 when SUMOylated. Here we identified the transcription co-factor hnRNP K as a novel binding partner of the SETDB1/KAP1 complex in mouse embryonic stem cells (mESCs) and show that hnRNP K is required for ERV silencing. RNAi-mediated knockdown of hnRNP K led to depletion of H3K9me3 at ERVs, concomitant with de-repression of proviral reporter constructs and specific ERV subfamilies, as well as a cohort of germline-specific genes directly targeted by SETDB1. While hnRNP K recruitment to ERVs is dependent upon KAP1, SETDB1 binding at these elements requires hnRNP K. Furthermore, an intact SUMO conjugation pathway is necessary for SETDB1 recruitment to proviral chromatin and depletion of hnRNP K resulted in reduced SUMOylation at ERVs. Taken together, these findings reveal a novel regulatory hierarchy governing SETDB1 recruitment and in turn, transcriptional silencing in mESCs.


DNA Repair | 2015

Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs

Jean-Philippe Gagné; Chantal Ethier; Daniel Defoy; Sylvie Bourassa; Marie-France Langelier; Amanda A. Riccio; John M. Pascal; Kyung-Mee Moon; Leonard J. Foster; Zhibin Ning; Daniel Figeys; Arnaud Droit; Guy G. Poirier

An important feature of poly(ADP-ribose) polymerases (PARPs) is their ability to readily undergo automodification upon activation. Although a growing number of substrates were found to be poly(ADP-ribosyl)ated, including histones and several DNA damage response factors, PARPs themselves are still considered as the main acceptors of poly(ADP-ribose). By monitoring spectral counts of specific hydroxamic acid signatures generated after the conversion of the ADP-ribose modification onto peptides by hydroxylamine hydrolysis, we undertook a thorough mass spectrometry mapping of the glutamate and aspartate ADP-ribosylation sites onto automodified PARP-1, PARP-2 and PARP-3. Thousands of hydroxamic acid-conjugated peptides were identified with high confidence and ranked based on their spectral count. This semi-quantitative approach allowed us to locate the preferentially targeted residues in DNA-dependent PARPs. In contrast to what has been reported in the literature, automodification of PARP-1 is not predominantly targeted towards its BRCT domain. Our results show that interdomain linker regions that connect the BRCT to the WGR module and the WGR to the PRD domain undergo prominent ADP-ribosylation during PARP-1 automodification. We also found that PARP-1 efficiently automodifies the D-loop structure within its own catalytic fold. Interestingly, additional major ADP-ribosylation sites were identified in functional domains of PARP-1, including all three zinc fingers. Similar to PARP-1, specific residues located within the catalytic sites of PARP-2 and PARP-3 are major targets of automodification following their DNA-dependent activation. Together our results suggest that poly(ADP-ribosyl)ation hot spots make a dominant contribution to the overall automodification process.


BMC Genomics | 2015

A search for protein biomarkers links olfactory signal transduction to social immunity

Maria Marta Guarna; Andony Melathopoulos; Elizabeth Huxter; Immacolata Iovinella; Robert Parker; Nikolay Stoynov; Amy Tam; Kyung-Mee Moon; Queenie Wt Chan; Paolo Pelosi; Rick White; Stephen F. Pernal; Leonard J. Foster

BackgroundThe Western honey bee (Apis mellifera L.) is a critical component of human agriculture through its pollination activities. For years, beekeepers have controlled deadly pathogens such as Paenibacillus larvae, Nosema spp. and Varroa destructor with antibiotics and pesticides but widespread chemical resistance is appearing and most beekeepers would prefer to eliminate or reduce the use of in-hive chemicals. While such treatments are likely to still be needed, an alternate management strategy is to identify and select bees with heritable traits that allow them to resist mites and diseases. Breeding such bees is difficult as the tests involved to identify disease-resistance are complicated, time-consuming, expensive and can misidentify desirable genotypes. Additionally, we do not yet fully understand the mechanisms behind social immunity. Here we have set out to discover the molecular mechanism behind hygienic behavior (HB), a trait known to confer disease resistance in bees.ResultsAfter confirming that HB could be selectively bred for, we correlated measurements of this behavior with protein expression over a period of three years, at two geographically distinct sites, using several hundred bee colonies. By correlating the expression patterns of individual proteins with HB scores, we identified seven putative biomarkers of HB that survived stringent control for multiple hypothesis testing. Intriguingly, these proteins were all involved in semiochemical sensing (odorant binding proteins), nerve signal transmission or signal decay, indicative of the series of events required to respond to an olfactory signal from dead or diseased larvae. We then used recombinant versions of two odorant-binding proteins to identify the classes of ligands that these proteins might be helping bees detect.ConclusionsOur data suggest that neurosensory detection of odors emitted by dead or diseased larvae is the likely mechanism behind a complex and important social immunity behavior that allows bees to co-exist with pathogens.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Conserved GTPase LepA (Elongation Factor 4) functions in biogenesis of the 30S subunit of the 70S ribosome

Michelle R. Gibbs; Kyung-Mee Moon; Menglin Chen; Rohan Balakrishnan; Leonard J. Foster; Kurt Fredrick

Significance The translational GTPase LepA is a highly conserved bacterial protein whose role in the cell has been elusive. Here, we show that the function of LepA lies in biogenesis of the 30S subunit of the ribosome, rather than in translation elongation, as previously supposed. Loss of LepA results in the accumulation of immature 30S particles lacking certain proteins of the 3′ (head) domain and containing precursor 17S rRNA. The GTPase activity of LepA, like that of other translational GTPases, is stimulated by interactions with both subunits of the ribosome. This implies that LepA acts at a late stage of assembly, in the context of the 70S ribosome. The physiological role of LepA, a paralog of EF-G found in all bacteria, has been a mystery for decades. Here, we show that LepA functions in ribosome biogenesis. In cells lacking LepA, immature 30S particles accumulate. Four proteins are specifically underrepresented in these particles—S3, S10, S14, and S21—all of which bind late in the assembly process and contribute to the folding of the 3′ domain of 16S rRNA. Processing of 16S rRNA is also delayed in the mutant strain, as indicated by increased levels of precursor 17S rRNA in assembly intermediates. Mutation ΔlepA confers a synthetic growth phenotype in absence of RsgA, another GTPase, well known to act in 30S subunit assembly. Analysis of the ΔrsgA strain reveals accumulation of intermediates that resemble those seen in the absence of LepA. These data suggest that RsgA and LepA play partially redundant roles to ensure efficient 30S assembly.


PLOS ONE | 2017

Comprehensive Identification of mRNA-Binding Proteins of Leishmania donovani by Interactome Capture

Devki Nandan; Sneha A. Thomas; Anne Nguyen; Kyung-Mee Moon; Leonard J. Foster; Neil E. Reiner

Leishmania are unicellular eukaryotes responsible for leishmaniasis in humans. Like other trypanosomatids, leishmania regulate protein coding gene expression almost exclusively at the post-transcriptional level with the help of RNA binding proteins (RBPs). Due to the presence of polycystronic transcription units, leishmania do not regulate RNA polymerase II-dependent transcription initiation. Recent evidence suggests that the main control points in gene expression are mRNA degradation and translation. Protein-RNA interactions are involved in every aspect of RNA biology, such as mRNA splicing, polyadenylation, localization, degradation, and translation. A detailed picture of these interactions would likely prove to be highly informative in understanding leishmania biology and virulence. We developed a strategy involving covalent UV cross-linking of RBPs to mRNA in vivo, followed by interactome capture using oligo(dT) magnetic beads to define comprehensively the mRNA interactome of growing L. donovani amastigotes. The protein mass spectrometry analysis of captured proteins identified 79 mRNA interacting proteins which withstood very stringent washing conditions. Strikingly, we found that 49 of these mRNA interacting proteins had no orthologs or homologs in the human genome. Consequently, these may represent high quality candidates for selective drug targeting leading to novel therapeutics. These results show that this unbiased, systematic strategy has the promise to be applicable to study the mRNA interactome during various biological settings such as metabolic changes, stress (low pH environment, oxidative stress and nutrient deprivation) or drug treatment.


Journal of Biological Chemistry | 2016

Identification of Avian Corticosteroid-binding Globulin (SerpinA6) Reveals the Molecular Basis of Evolutionary Adaptations in SerpinA6 Structure and Function as a Steroid-binding Protein.

Ganna Vashchenko; Samir Das; Kyung-Mee Moon; Jason C. Rogalski; Matthew D. Taves; Kiran K. Soma; Filip Van Petegem; Leonard J. Foster; Geoffrey L. Hammond

Corticosteroid-binding globulin (CBG) was isolated from chicken serum and identified by mass spectrometry and genomic analysis. This revealed that the organization and synteny of avian and mammalian SerpinA6 genes are conserved. Recombinant zebra finch CBG steroid-binding properties reflect those of the natural protein in plasma and confirm its identity. Zebra finch and rat CBG crystal structures in complex with cortisol resemble each other, but their primary structures share only ∼40% identity, and their steroid-binding site topographies differ in several unexpected ways. Remarkably, a tryptophan that anchors ligands in mammalian CBG steroid-binding sites is replaced by an asparagine. Phylogenetic comparisons show that reptilian CBG orthologs share this unexpected property. Glycosylation of this asparagine in zebra finch CBG does not influence its steroid-binding affinity, but we present evidence that it may participate in protein folding and steroid-binding site formation. Substitutions of amino acids within zebra finch CBG that are conserved only in birds reveal how they contribute to their distinct steroid-binding properties, including their high (nanomolar) affinities for glucocorticoids, progesterone, and androgens. As in mammals, a protease secreted by Pseudomonas aeruginosa cleaves CBG in zebra finch plasma within its reactive center loop and disrupts steroid binding, suggesting an evolutionarily conserved property of CBGs. Measurements of CBG mRNA in zebra finch tissues indicate that liver is the main site of plasma CBG production, and anti-zebra finch CBG antibodies cross-react with CBGs in other birds, extending opportunities to study how CBG regulates the actions of glucocorticoids and sex steroids in these species.


Scientific Reports | 2017

Peptide biomarkers used for the selective breeding of a complex polygenic trait in honey bees

M. Marta Guarna; Shelley E. Hoover; Elizabeth Huxter; Heather Higo; Kyung-Mee Moon; Dominik Domanski; Miriam E.F. Bixby; Andony Melathopoulos; Abdullah Ibrahim; Michael Peirson; Suresh D. Desai; Derek Micholson; Rick White; Christoph H. Borchers; Robert W. Currie; Stephen F. Pernal; Leonard J. Foster

We present a novel way to select for highly polygenic traits. For millennia, humans have used observable phenotypes to selectively breed stronger or more productive livestock and crops. Selection on genotype, using single-nucleotide polymorphisms (SNPs) and genome profiling, is also now applied broadly in livestock breeding programs; however, selection on protein/peptide or mRNA expression markers has not yet been proven useful. Here we demonstrate the utility of protein markers to select for disease-resistant hygienic behavior in the European honey bee (Apis mellifera L.). Robust, mechanistically-linked protein expression markers, by integrating cis- and trans- effects from many genomic loci, may overcome limitations of genomic markers to allow for selection. After three generations of selection, the resulting marker-selected stock outperformed an unselected benchmark stock in terms of hygienic behavior, and had improved survival when challenged with a bacterial disease or a parasitic mite, similar to bees selected using a phenotype–based assessment for this trait. This is the first demonstration of the efficacy of protein markers for industrial selective breeding in any agricultural species, plant or animal.

Collaboration


Dive into the Kyung-Mee Moon's collaboration.

Top Co-Authors

Avatar

Leonard J. Foster

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen F. Pernal

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Rick White

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Marta Guarna

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Abdullah Ibrahim

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Carol Chen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geoffrey L. Hammond

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge