Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyung-Soo Inn is active.

Publication


Featured researches published by Kyung-Soo Inn.


Scientific Reports | 2016

Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity

Chan-Ki Min; Shinhye Cheon; Na-Young Ha; Kyung Mok Sohn; Yuri Kim; Abdimadiyeva Aigerim; Hyun Mu Shin; Ji-Yeob Choi; Kyung-Soo Inn; Jin-Hwan Kim; Jae Young Moon; Myung-Sik Choi; Nam-Hyuk Cho; Yeon-Sook Kim

Despite the ongoing spread of MERS, there is limited knowledge of the factors affecting its severity and outcomes. We analyzed clinical data and specimens from fourteen MERS patients treated in a hospital who collectively represent a wide spectrum of disease severity, ranging from mild febrile illness to fatal pneumonia, and classified the patients into four groups based on severity and mortality. Comparative and kinetic analyses revealed that high viral loads, weak antibody responses, and lymphopenia accompanying thrombocytopenia were associated with disease mortality, whereas persistent and gradual increases in lymphocyte responses might be required for effective immunity against MERS-CoV infection. Leukocytosis, primarily due to increased neutrophils and monocytes, was generally observed in more severe and fatal cases. The blood levels of cytokines such as IL-10, IL-15, TGF-β, and EGF were either positively or negatively correlated with disease mortality. Robust induction of various chemokines with differential kinetics was more prominent in patients that recovered from pneumonia than in patients with mild febrile illness or deceased patients. The correlation of the virological and immunological responses with disease severity and mortality, as well as their responses to current antiviral therapy, may have prognostic significance during the early phase of MERS.


Biomaterials | 2013

Heat shock protein-mediated cell penetration and cytosolic delivery of macromolecules by a telomerase-derived peptide vaccine

Seoung-Ae Lee; Boram Kim; Bu-Kyung Kim; Dong-Won Kim; Won-Jun Shon; Na-Rae Lee; Kyung-Soo Inn; Bum-Joon Kim

A reverse-transcriptase-subunit of telomerase (hTERT) derived peptide, GV1001, has been developed as a vaccine against various cancers. Here, we report an unexpected function of GV1001 as a cell-penetrating peptide (CPP). GV1001 was delivered into a variety of cells including various cancer cell lines and primary blood cells. Moreover, the delivered GV1001 was predominantly located in the cytoplasm of the cells, while a significantly higher proportion of TAT peptide was localized in the nucleus. Macromolecules such as proteins, DNA and siRNA, which were linked to GV1001 by direct covalent conjugation or non-covalent complexation through poly-lysine, were successfully delivered into cells, indicating that GV1001 can be used as a carrier for macromolecules. Expression of the delivered DNA, and lowered expression of the target gene by the delivered siRNA, suggest the potential therapeutic use of GV1001. Pull-down analysis identified Heat Shock Protein 90 (HSP90) and 70 (HSP70) as GV1001 interacting proteins. Treatment of Anti-HSP90 and HSP70 antibodies lowered the internalization of GV1001, indicating that the interaction is critical for the efficient internalization of GV1001. Collectively, the results of this study suggest the pharmaceutical potential of GV1001, already proven safe in clinical trials, as a carrier for the delivery of macromolecular therapeutics into cells, in addition to its own anti-cancer activity.


Biochemical and Biophysical Research Communications | 2014

Inhibition of estrogen signaling through depletion of estrogen receptor alpha by ursolic acid and betulinic acid from Prunella vulgaris var. lilacina

Hye-In Kim; Fu-Shi Quan; Ji-Eun Kim; Na-Rae Lee; Hyun Ji Kim; Su Ji Jo; Chae-Min Lee; Dae Sik Jang; Kyung-Soo Inn

Extracts of Prunella vulgaris have been shown to exert antiestrogenic effects. To identify the compounds responsible for these actions, we isolated the constituents of P. vulgaris and tested their individual antiestrogenic effects. Rosmarinic acid, caffeic acid, ursolic acid (UA), oleanolic acid, hyperoside, rutin and betulinic acid (BA) were isolated from the flower stalks of P. vulgaris var. lilacina Nakai (Labiatae). Among these constituents, UA and BA showed significant antiestrogenic effects, measured as a decrease in the mRNA level of GREB1, an estrogen-responsive protein; the effects of BA were stronger than those of UA. UA and BA were capable of suppressing estrogen response element (ERE)-dependent luciferase activity and expression of estrogen-responsive genes in response to exposure to estradiol, further supporting the suppressive role of these compounds in estrogen-induced signaling. However, neither UA nor BA was capable of suppressing estrogen signaling in cells ectopically overexpressing estrogen receptor α (ERα). Furthermore, both mRNA and protein levels of ERα were reduced by treatment with UA or BA, suggesting that UA and BA inhibit estrogen signaling by suppressing the expression of ERα. Interestingly, both compounds enhanced prostate-specific antigen promoter activity. Collectively, these findings demonstrate that UA and BA are responsible for the antiestrogenic effects of P. vulgaris and suggest their potential use as therapeutic agents against estrogen-dependent tumors.


Virology Journal | 2013

Antiviral activity of carnosic acid against respiratory syncytial virus

Han-Bo Shin; Myung-Soo Choi; Byeol Ryu; Na-Rae Lee; Hye-In Kim; Hye-Eun Choi; Jun Chang; Kyung-Tae Lee; Dae Sik Jang; Kyung-Soo Inn

BackgroundHuman respiratory syncytial virus (hRSV) is a leading cause of severe lower respiratory infection and a major public health threat worldwide. To date, no vaccine or effective therapeutic agent has been developed. In a screen for potential therapeutic agents against hRSV, we discovered that an extract of Rosmarinus officinalis exerted a strong inhibitory effect against hRSV infection. Subsequent studies identified carnosic acid as a bioactive constituent responsible for anti-hRSV activity. Carnosic acid has been shown to exhibit potent antioxidant and anti-cancer activities. Anti-RSV activity of carnosic acid was further investigated in this study.MethodsEffects of extracts from various plants and subfractions from R. officinalis on hRSV replication were determined by microneutralization assay and plaque assay. Several constituents were isolated from ethyl acetate fraction of R. officinalis and their anti-RSV activities were assessed by plaque assay as well as reverse-transcription quantitative PCR to determine the synthesis of viral RNAs.ResultsAmong the tested bioactive constituents of R. officinalis, carnosic acid displayed the most potent anti-hRSV activity and was effective against both A- and B-type viruses. Carnosic acid efficiently suppressed the replication of hRSV in a concentration-dependent manner. Carnosic acid effectively suppressed viral gene expression without inducing type-I interferon production or affecting cell viability, suggesting that it may directly affect viral factors. A time course analysis showed that addition of carnosic acid 8 hours after infection still effectively blocked the expression of hRSV genes, further suggesting that carnosic acid directly inhibited the replication of hRSV.ConclusionsThe current study demonstrates that carnosic acid, a natural compound that has already been shown to be safe for human consumption, has anti-viral activity against hRSV, efficiently blocking the replication of this virus. Carnosic acid inhibited both A- and B- type hRSV, while it did not affect the replication of influenza A virus, suggesting that its antiviral activity is hRSV-specific. Collectively, this study suggests the need for further evaluation of carnosic acid as a potential treatment for hRSV.


Evidence-based Complementary and Alternative Medicine | 2015

A Survey of Therapeutic Effects of Artemisia capillaris in Liver Diseases

Eungyeong Jang; Bum-Joon Kim; Kyung-Tae Lee; Kyung-Soo Inn; Jang-Hoon Lee

Artemisia capillaris has been recognized as an herb with therapeutic efficacy in liver diseases and widely used as an alternative therapy in Asia. Numerous studies have reported the antisteatotic, antioxidant, anti-inflammatory, choleretic, antiviral, antifibrotic, and antitumor activities of A. capillaris. These reports support its therapeutic potential in various liver diseases such as chronic hepatitis B virus (HBV) infection, cirrhosis, and hepatocellular carcinoma. In addition, several properties of its various constituents, which provide clues to the underlying mechanisms of its therapeutic effects, have been studied. This review describes the scientific evidence supporting the therapeutic potential of A. capillaris and its constituents in various liver diseases.


Molecular Cancer | 2015

Male-specific hepatitis B virus large surface protein variant W4P potentiates tumorigenicity and induces gender disparity

Seoung-Ae Lee; Hong Kim; You-Sub Won; Seung-Hyeok Seok; Yi Rang Na; Han-Bo Shin; Kyung-Soo Inn; Bum-Joon Kim

BackgroundThe underlying mechanisms of carcinogenesis and gender disparity in hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC) remain unclear. Recently, we reported a novel HCC-related W4P/R mutation in the large surface protein (LHB) of HBV genotype C, which was found exclusively in male HCC patients.MethodsLHB sequences from a carrier (wild type; WT) and W4P variant LHB sequence from an HCC patient were cloned and used to generate NIH3T3 and Huh7 cell lines. Cell proliferation and in vitro tumorigenicity were assessed by cell growth and transformation assays. Male and female nude mice were injected with the cells to determine in vivo tumorigenicity. To confirm the effect of estrogen in W4P-mediated tumorigenicity, male mice were injected with estrogen and challenged with W4P-expressing cells. The serum levels of different cytokines from the mouse model and patients were analyzed by ELISA. A critical role of interleukin (IL)-6 signaling in W4P-mediated tumorigenicity was tested by inhibition of Jak2.ResultsAlthough both WT and W4P variant LHBs enhanced cell proliferation by regulating the cell cycle and facilitated cell colony formation, the W4P variant demonstrated significantly higher activity. NIH3T3 cells expressing variant LHB, but not the WT, induced tumor in a nude mouse model. Tumor masses produced by variant LHB were significantly larger in male than female mice, and significantly reduced by estrogen. IL-6, but not tumor necrosis factor-α, was elevated in male mice harboring W4P-induced tumor, and was reduced by estrogen. IL-6 levels of HCC patients with the W4P variant were significantly higher than those of patients with WT LHB. W4P LHB induced higher production of IL-6 than WT LHB in cell lines, and the level was reduced by estrogen. The ability to reduce cell proliferation and colony formation of W4P LHB was hampered by inhibition of IL-6 signaling.ConclusionsThis study suggests that the W4P mutation during the natural course of chronic hepatitis B infection may contribute to HCC development, particularly in male patients, in an IL-6-dependent manner.


International Immunopharmacology | 2015

Inhibition of respiratory syncytial virus replication and virus-induced p38 kinase activity by berberine

Han-Bo Shin; Myung-Soo Choi; Chae-Min Yi; Jun Lee; Nam-Jung Kim; Kyung-Soo Inn

Respiratory syncytial virus (RSV) causes severe lower respiratory tract infection and poses a major public health threat worldwide. No effective vaccines or therapeutics are currently available; berberine, an isoquinoline alkaloid from various medicinal plants, has been shown to exert antiviral and several other biological effects. Recent studies have shown that p38 mitogen-activated protein kinase (MAPK) activity is implicated in infection by and replication of viruses such as RSV and the influenza virus. Because berberine has previously been implicated in modulating the activity of p38 MAPK, its effects on RSV infection and RSV-mediated p38 MAPK activation were examined. Replication of RSV in epithelial cells was significantly reduced by treatment with berberine. Berberine treatment caused decrease in viral protein and mRNA syntheses. Similar to previously reported findings, RSV infection caused phosphorylation of p38 MAPK at a very early time point of infection, and phosphorylation was dramatically reduced by berberine treatment. In addition, production of interleukin-6 mRNA upon RSV infection was significantly suppressed by treatment with berberine, suggesting the anti-inflammatory role of berberine during RSV infection. Taken together, we showed that berberine, a natural compound already proven to be safe for human consumption, suppresses the replication of RSV. In addition, the current study suggests that inhibition of RSV-mediated early p38 MAPK activation, which has been implicated as an early step in viral infection, as a potential molecular mechanism.


Biomaterials | 2014

Tumor-suppressive effect of a telomerase-derived peptide by inhibiting hypoxia-induced HIF-1α-VEGF signaling axis.

Bu-Kyung Kim; Boram Kim; Hyunjoo Lee; Seoung-Ae Lee; Byoung-Jun Kim; Hong Kim; Yu-Sub Won; Won-Jun Shon; Na-Rae Lee; Kyung-Soo Inn; Bum-Joon Kim

A reverse-transcriptase-subunit of telomerase (hTERT) derived peptide, GV1001, has been developed as a vaccine against various cancers. Previously, we have shown that GV1001 interacts with heat shock proteins (HSPs) and penetrates cell membranes to be localized in the cytoplasm. In this study, we have found that GV1001 lowered the level of intracellular and surface HSPs of various cancer cells. In hypoxic conditions, GV1001 treatment of cancer cells resulted in decreases of HSP90, HSP70, and HIF-1α. Subsequently, proliferation of cancer cells and synthesis of VEGF were significantly reduced by treatment using GV1001 in hypoxic conditions. In an experiment using a nude mouse xenograft model, GV1001 exerted a similar tumor suppressive effect, further confirming its anti-tumor efficacy. Higher apoptotic cell death, reduced proliferation of cells, and fewer blood vessels were observed in GV1001-treated tumors compared to control. In addition, significant reduction of Tie2+ CD11b+ monocytes, which were recruited by VEGF from tumor cells and play a critical role in angiogenesis, was observed in GV1001-treated tumors. Collectively, the results suggest that GV1001 possesses potential therapeutic efficacy in addition to its ability to induce anti-cancer immune responses by suppressing both HSP70 and HSP90.


Molecules and Cells | 2015

Regulation of MDA5-MAVS Antiviral Signaling Axis by TRIM25 through TRAF6-Mediated NF-κB Activation.

Na-Rae Lee; Hye-In Kim; Myung-Soo Choi; Chae-Min Yi; Kyung-Soo Inn

Tripartite motif protein 25 (TRIM25), mediates K63-linked polyubiquitination of Retinoic acid inducible gene I (RIG-I) that is crucial for downstream antiviral interferon signaling. Here, we demonstrate that TRIM25 is required for melanoma differentiation-associated gene 5 (MDA5) and MAVS mediated activation of NF-κB and interferon production. TRIM25 is required for the full activation of NF-κB at the downstream of MAVS, while it is not involved in IRF3 nuclear translocation. Mechanical studies showed that TRIM25 is involved in TRAF6-mediated NF-κB activation. These collectively indicate that TRIM25 plays an additional role in RIG-I/MDA5 signaling other than RIG-I ubiquitination via activation of NF-κB.


Bioorganic & Medicinal Chemistry Letters | 2015

Synthesis and biological evaluation of N-cyclopropylbenzamide-benzophenone hybrids as novel and selective p38 mitogen activated protein kinase (MAPK) inhibitors.

Jinyuk Heo; Han-Bo Shin; Jun Lee; Tae-Lim Kim; Kyung-Soo Inn; Nam-Jung Kim

A series of hybrid molecules consisting of benzophenones and N-cyclopropyl-3-methylbenzamides were synthesized and biologically evaluated as novel p38 mitogen activated protein kinase (MAPK) inhibitors. In particular, we found that compound 10g displayed potent p38α MAPK inhibitory activity (IC50=0.027 μM), high kinase selectivity, and significant anti-inflammatory activity in THP-1 monocyte cells.

Collaboration


Dive into the Kyung-Soo Inn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bum-Joon Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Kim

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge