Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nam-Jung Kim is active.

Publication


Featured researches published by Nam-Jung Kim.


International Immunopharmacology | 2015

Inhibition of respiratory syncytial virus replication and virus-induced p38 kinase activity by berberine

Han-Bo Shin; Myung-Soo Choi; Chae-Min Yi; Jun Lee; Nam-Jung Kim; Kyung-Soo Inn

Respiratory syncytial virus (RSV) causes severe lower respiratory tract infection and poses a major public health threat worldwide. No effective vaccines or therapeutics are currently available; berberine, an isoquinoline alkaloid from various medicinal plants, has been shown to exert antiviral and several other biological effects. Recent studies have shown that p38 mitogen-activated protein kinase (MAPK) activity is implicated in infection by and replication of viruses such as RSV and the influenza virus. Because berberine has previously been implicated in modulating the activity of p38 MAPK, its effects on RSV infection and RSV-mediated p38 MAPK activation were examined. Replication of RSV in epithelial cells was significantly reduced by treatment with berberine. Berberine treatment caused decrease in viral protein and mRNA syntheses. Similar to previously reported findings, RSV infection caused phosphorylation of p38 MAPK at a very early time point of infection, and phosphorylation was dramatically reduced by berberine treatment. In addition, production of interleukin-6 mRNA upon RSV infection was significantly suppressed by treatment with berberine, suggesting the anti-inflammatory role of berberine during RSV infection. Taken together, we showed that berberine, a natural compound already proven to be safe for human consumption, suppresses the replication of RSV. In addition, the current study suggests that inhibition of RSV-mediated early p38 MAPK activation, which has been implicated as an early step in viral infection, as a potential molecular mechanism.


Bioorganic & Medicinal Chemistry Letters | 2015

Synthesis and biological evaluation of N-cyclopropylbenzamide-benzophenone hybrids as novel and selective p38 mitogen activated protein kinase (MAPK) inhibitors.

Jinyuk Heo; Han-Bo Shin; Jun Lee; Tae-Lim Kim; Kyung-Soo Inn; Nam-Jung Kim

A series of hybrid molecules consisting of benzophenones and N-cyclopropyl-3-methylbenzamides were synthesized and biologically evaluated as novel p38 mitogen activated protein kinase (MAPK) inhibitors. In particular, we found that compound 10g displayed potent p38α MAPK inhibitory activity (IC50=0.027 μM), high kinase selectivity, and significant anti-inflammatory activity in THP-1 monocyte cells.


Biochemical and Biophysical Research Communications | 2016

A novel p38 mitogen activated protein kinase (MAPK) specific inhibitor suppresses respiratory syncytial virus and influenza A virus replication by inhibiting virus-induced p38 MAPK activation.

Myung-Soo Choi; Jinyuk Heo; Chae-Min Yi; Junsu Ban; Noh-Jin Lee; Na-Rae Lee; Sang Won Kim; Nam-Jung Kim; Kyung-Soo Inn

Respiratory syncytial virus (RSV) and influenza A virus are leading causes of acute lower respiratory infectious disease. Respiratory diseases caused by RSV and influenza A virus result in serious economic burden and life-threatening disease for immunocompromised people. With the revelation that p38 mitogen-activated protein kinase (MAPK) activity in host cells is crucial for infection and replication of RSV and influenza A virus, inhibition of p38 MAPK activity has been suggested as a potential antiviral therapeutic strategy. However, the low selectivity and high toxicity of the p38 MAPK inhibitors necessitate the development of better inhibitors. Herein, we report the synthesis of a novel p38 MAPK inhibitor, NJK14047, with high kinase selectivity. In this work, it was demonstrated that NJK14047 inhibits RSV- and influenza A-mediated p38 MAPK activation in epithelial cells. Subsequently, NJK14047 treatment resulted in decreased viral replication and viral mRNA synthesis. In addition, secretion of interleukin-6 from infected cells was greatly diminished by NJK14047, suggesting that it can ameliorate immunopathological responses to RSV and influenza A. Collectively, the results suggest that NJK14047 has therapeutic potential to treat respiratory viral infection through the suppression of p38 MAPK activation, which is suggested to be an essential step for respiratory virus infection.


Biological & Pharmaceutical Bulletin | 2015

Fulgidic Acid Isolated from the Rhizomes of Cyperus rotundus Suppresses LPS-Induced iNOS, COX-2, TNF-α, and IL-6 Expression by AP-1 Inactivation in RAW264.7 Macrophages

Ji-Sun Shin; Yujin Hong; Hwi-Ho Lee; Byeol Ryu; Young-Wuk Cho; Nam-Jung Kim; Dae Sik Jang; Kyung-Tae Lee

To identify bioactive natural products possessing anti-inflammatory activity, the potential of fulgidic acid from the rhizomes of Cyperus rotundus and the underlying mechanisms involved in its anti-inflammatory activity were evaluated in this study. Fulgidic acid reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Consistent with these findings, fulgidic acid suppressed the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein level, as well as iNOS, COX-2, TNF-α, and IL-6 at mRNA levels. Fulgidic acid suppressed the LPS-induced transcriptional activity of activator protein-1 (AP-1) as well as the phosphorylation of c-Fos and c-Jun. On the other hand, fulgidic acid did not show any effect on LPS-induced nuclear factor κB (NF-κB) activity. Taken together, these results suggest that the anti-inflammatory effect of fulgidic acid is associated with the suppression of iNOS, COX-2, TNF-α, and IL-6 expression through down-regulating AP-1 activation in LPS-induced RAW264.7 macrophages.


Bioorganic & Medicinal Chemistry | 2015

Synthesis of (2-amino)ethyl derivatives of quercetin 3-O-methyl ether and their antioxidant and neuroprotective effects.

Young Hun Lee; Hyoung Ja Kim; Ho Yoo; Seo Yun Jung; Bong Jin Kwon; Nam-Jung Kim; Changbae Jin; Yong Sup Lee

Reactive oxygen species have been implicated in several diseases, particularly in ischemia-reperfusion injury. Quercetin 3-O-methyl ether has been reported to show potent antioxidant and neuroprotective activity against neuronal damage induced by reactive oxygen species. Several aminoethyl-substituted derivatives of quercetin 3-O-methyl ether have been synthesized to increase water solubility while retaining antioxidant and neuroprotective activity. Among such derivatives, compound 3a shows potent and well-balanced antioxidant activity in three types of cell-free assay systems and has in vivo neuroprotective effects on transient focal ischemic injury induced by the occlusion of the middle cerebral artery in rats.


Chemico-Biological Interactions | 2017

The natural terthiophene α-terthienylmethanol induces S phase cell cycle arrest of human ovarian cancer cells via the generation of ROS stress

Umma Hafsa Preya; Kyung-Tae Lee; Nam-Jung Kim; Jung-Yun Lee; Dae Sik Jang; Jung-Hye Choi

Ovarian cancer is the most lethal gynecological malignancy worldwide. Thiophenes such as terthiophene have been shown to have anti-tumor effects on several cancer cell lines, including ovarian cancer cells. However, the underlying mechanisms behind the anti-proliferative effect of thiophenes are poorly understood. In this study, we investigated the molecular mechanisms underlying the anti-proliferative effect of α-terthienylmethanol, a terthiophene isolated from Eclipta prostrata (False Daisy), on human ovarian cancer cells. We found that α-terthienylmethanol is a more potent inhibitor of cell growth than is cisplatin in human ovarian cancer cells. α-Terthienylmethanol induces cell cycle arrest in ovarian cancer cells, as shown by the accumulation of cells in S phase. In addition, α-terthienylmethanol induced a change in S phase-related proteins cyclin A, cyclin-dependent kinase 2, and cyclin D2. Knockdown of cyclin A using specific siRNAs significantly compromised α-terthienylmethanol-induced S phase arrest. We further demonstrated that α-terthienylmethanol induced an increase in intracellular ROS, and the antioxidant N-acetyl-l-cysteine significantly reversed the S phase arrest induced by α-terthienylmethanol. Moreover, α-terthienylmethanol significantly increased the levels of p-H2AX, a DNA damage marker. These results suggest that α-terthienylmethanol inhibits the growth of human ovarian cancer cells by S phase cell cycle arrest via induction of ROS stress and DNA damage.


Biomolecules & Therapeutics | 2018

Synthetic 3’,4’-Dihydroxyflavone Exerts Anti-Neuroinflammatory Effects in BV2 Microglia and a Mouse Model

Namkwon Kim; Hyung-Seok Yoo; Yeon-Joo Ju; Myung Sook Oh; Kyung-Tae Lee; Kyung-Soo Inn; Nam-Jung Kim; Jong Kil Lee

Neuroinflammation is an immune response within the central nervous system against various proinflammatory stimuli. Abnormal activation of this response contributes to neurodegenerative diseases such as Parkinson disease, Alzheimer’s disease, and Huntington disease. Therefore, pharmacologic modulation of abnormal neuroinflammation is thought to be a promising approach to amelioration of neurodegenerative diseases. In this study, we evaluated the synthetic flavone derivative 3′,4′-dihydroxyflavone, investigating its anti-neuroinflammatory activity in BV2 microglial cells and in a mouse model. In BV2 microglial cells, 3′,4′-dihydroxyflavone successfully inhibited production of chemokines such as nitric oxide and prostaglandin E2 and proinflammatory cytokines such as tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 in BV2 microglia. It also inhibited phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation. This indicates that the anti-inflammatory activities of 3′,4′-dihydroxyflavone might be related to suppression of the proinflammatory MAPK and NF-κB signaling pathways. Similar anti-neuroinflammatory activities of the compound were observed in the mouse model. These findings suggest that 3′,4′-dihydroxyflavone is a potential drug candidate for the treatment of microglia-related neuroinflammatory diseases.


Antimicrobial Agents and Chemotherapy | 2017

An Effective Antiviral Approach Targeting Hepatitis B Virus with NJK14047, a Novel and Selective Biphenyl Amide p38 Mitogen-Activated Protein Kinase Inhibitor

So Young Kim; Hong Kim; Sang-Won Kim; Na-Rae Lee; Chae-Min Yi; Jinyuk Heo; Bum-Joon Kim; Nam-Jung Kim; Kyung-Soo Inn

ABSTRACT Despite recent advances in therapeutic strategies against hepatitis B virus (HBV) infection, chronic hepatitis B remains a major global health burden. Recent studies have shown that targeting host factors instead of viral factors can be an effective antiviral strategy with low risk of the development of resistance. Efforts to identify host factors affecting viral replication have identified p38 mitogen-activated protein kinase (MAPK) as a possible target for antiviral strategies against various viruses, including HBV. Here, a series of biphenyl amides were synthesized as novel p38 MAPK selective inhibitors and assessed for their anti-HBV activities. The suppression of HBV surface antigen (HBsAg) production by these compounds was positively correlated with p38 MAPK-inhibitory activity. The selected compound NJK14047 displayed significant anti-HBV activity, as determined by HBsAg production, HBeAg secretion, and HBV production. NJK14047 efficiently suppressed the secretion of HBV antigens and HBV particles from HBV genome-transfected cells and HBV-infected sodium taurocholate cotransporting polypeptide-expressing human hepatoma cells. Furthermore, NJK14047 treatment resulted in a significant decrease of pregenomic RNA and covalently closed circular DNA (cccDNA) of HBV in HBV-harboring cells, indicating its ability to inhibit HBV replication. Considering that suppression of HBsAg secretion and elimination of cccDNA of HBV are the major aims of anti-HBV therapeutic strategies, the results suggested the potential use of these compounds as a novel class of anti-HBV agents targeting host factors critical for viral infection.


International Journal of Oncology | 2015

NJK14013, a novel synthetic estrogen receptor-α agonist, exhibits estrogen receptor-independent, tumor cell-specific cytotoxicity.

Hye-In Kim; Tae-Lim Kim; Ji-Eun Kim; Jun Lee; Jinyuk Heo; Na-Rae Lee; Nam-Jung Kim; Kyung-Soo Inn

Estrogens act through interactions with estrogen receptors (ERs) to play diverse roles in various pathophysiological conditions. A number of synthetic selective estrogen receptor modulators (SERMs), such as tamoxifen and raloxifene, have been developed and used to treat ER-related diseases, including breast cancer and osteoporosis. Here, we identified a novel compound, bis(4-hydroxyphenyl)methanone-O-isopentyl oxime, designated NJK14013, as an ER agonist. NJK14013 activated ER-dependent transcription in a concentration-dependent manner, while suppressing androgen receptor-dependent transcriptional activity. It induced the activation-related phosphorylation of ER and enhanced the transcription of growth regulation by estrogen in breast cancer 1 (GREB1), further supporting its ER-stimulating activity. NJK14013 exerted anti-proliferative effects on various cancer cell lines, including an ER-negative breast cancer cell line, suggesting that it is capable of suppressing the growth of cancer cells independent of its ER-modulating activity. In addition, NJK14013 treatment resulted in significant apoptotic death of MCF7 and Ishikawa cancer cells, but did not induce apoptosis in non-cancer human umbilical vein endothelial cells. Collectively, our findings demonstrate that NJK14013 is a novel SERM that can activate ER-mediated transcription in MCF7 cells and suppress the proliferation of various cancer cells, including breast cancer cells and endometrial cancer cells. These results suggest that NJK14013 has potential as a novel SERM for anticancer or hormone-replacement therapy with reduced risk of carcinogenesis.


European Journal of Medicinal Chemistry | 2014

Glucal-conjugated sterols as novel vascular leakage blocker: Structure–activity relationship focusing on the C17-side chain

Kyeojin Kim; Sony Maharjan; Changjin Lim; Nam-Jung Kim; Vijayendra Agrawal; Young Taek Han; Sujin Lee; Hongchan An; Hwayoung Yun; Hyun-Jung Choi; Young-Guen Kwon; Young-Ger Suh

A series of glucal-conjugated sterols as novel vascular leakage blocker were identified through design, synthesis and biologically evaluation. In addition, the structure-activity relationship (SAR) of the glucal-conjugated sterols focusing on the C17-side chain was also established. The sterol analogs linked with the rigid C17-side chain side chains exhibited potent cell survival activities. In particular, analog 21l, which possesses a cyclopentyl oxime moiety, was shown to have excellent pharmacological effects on retinal vascular leakage in a diabetic mouse model.

Collaboration


Dive into the Nam-Jung Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Lee

Kyung Hee University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. S. Yu

Kyung Hee University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge