Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyung-Sook Yun is active.

Publication


Featured researches published by Kyung-Sook Yun.


Journal of Geophysical Research | 2008

Relationship between ENSO and northward propagating intraseasonal oscillation in the east Asian summer monsoon system

Kyung-Sook Yun; Kyong-Hwan Seo; Kyung-Ja Ha

(1) Observational studies are presented on the relationship between El Nino-Southern Oscillation (ENSO) and the northward propagating intraseasonal oscillation (NPISO) in the east Asian summer monsoon (EASM) system. The summer NPISO activity shows a significant correlation with the preceding winter extreme phase of ENSO cycles. A higher correlation appears during late summer, which is consistent with frequent heavy rainfall events at that time as revealed in some previous case studies. The westward expansion of broad anticyclonic circulation over the western North Pacific and the smaller cyclonic circulation around Korea and Japan are found to be associated with the NPISO activity. ENSO affects the late summer NPISO activity through an atmospheric bridge and wave propagation; the springtime Indian Ocean sea surface temperature warming induced by ENSO through the Walker circulation leads to the downward motion and suppressed convection over the Philippine Sea, and this generates the forced Rossby wave train, forming the above south-to-north low-level circulation anomalies.


Journal of Climate | 2010

Interdecadal Change in the Relationship between ENSO and the Intraseasonal Oscillation in East Asia

Kyung-Sook Yun; Kyong-Hwan Seo; Kyung-Ja Ha

Abstract The northward-propagating intraseasonal oscillation (NPISO) during the boreal summer is closely linked to the onset/retreat and intensity of the East Asian summer monsoon (EASM). In this study, interdecadal variability in the relationships between the NPISO and El Nino–Southern Oscillation (ENSO) was investigated using long-term outgoing longwave radiation data obtained from the 40-yr ECMWF Re-Analysis (ERA-40) for a 44-yr period (1958 to 2001). It was found that before the late 1970s, the preceding winter ENSO influenced the early summer (i.e., May to June) NPISO activity, whereas after the late 1970s a strong relationship appeared during the later summertime (i.e., July to August). The May–June NPISO before the late 1970s was modulated by springtime Indian Ocean sea surface temperature warming and central North Pacific suppressed convection anomalies and was consequently related to the ENSO-induced west Pacific (WP) pattern, which shows a north–south dipole structure over the North Pacific from...


Tellus A | 2008

The 30–60-day oscillation in the East Asian summer monsoon and its time-dependent association with the ENSO

Kyung-Sook Yun; Baohua Ren; Kyung-Ja Ha; Johnny C. L. Chan; Jong-Ghap Jhun

Abstract Based on 30–60-day oscillation in the East Asian summer monsoon (EASM), the relationship between its northward propagation and ENSO (El Ni˜no and Southern Oscillation) was investigated. To explicitly describe the 30–60-day monsoonal evolution, an empirical orthogonal function (EOF) analysis was carried out on the temporal-latitude section of the longitudinal average for 115◦E–120◦E. The principal 30–60-day EASM mode captures a northward propagation of well-organized intraseasonal oscillation (NISO). Using the associated time series of the first mode, we found a significant lagged correlation between interannual variability of the NISO and ENSO. Its lagged correlations with NINO indices have a quasi-biennial (QB) characteristic through the preceding summer and the concurrent summer. Their relationship was found by the regression analysis relating the low-level circulation to the ocean temperature. The western North Pacific anticyclone and the anticyclone-induced easterly vertical wind shear anomalies induce the dynamical linkage between the NISO and QB-type ENSO. It is shown that the NISO is more closely tied with QB-type ENSO in its phase than in its amplitude, and may be connected to the anomalous easterly wind and the eastward evolution of an oceanic Kelvin wave, which is associated with abrupt ENSO transition. The predictability on ENSO and NISO is examined through the canonical correlation analysis.


Journal of Geophysical Research | 2014

Recent intensification of the South and East Asian monsoon contrast associated with an increase in the zonal tropical SST gradient

Kyung-Sook Yun; June-Yi Lee; Kyung-Ja Ha

Observed analysis of the 35 years of 1979–2013 reveals considerable interdecadal change and significant recent intensification in the difference of convective precipitation between the South Asian monsoon (SAM) and East Asian monsoon (EAM) systems during the major summer monsoon season (June–July). We propose that the recent strengthening of the zonal gradient of sea surface temperature (SST) between the Indian Ocean, western Pacific, and eastern Pacific is a possible cause for the intensification of the convective precipitation contrast. It is noted that the strengthening of the zonal SST gradient associated with the recent mega-La Nina trend tends to reinforce the negative connection between SAM and EAM systems by inducing enhanced convection over the maritime continent and then facilitating the northwestward emanation of Rossby waves. Consequently, a cyclonic circulation anomaly that effectively changes the local Hadley circulation has been formed over the SAM region, resulting in the noticeable difference between the SAM and EAM. The years 2013 and 1983 are further investigated as the strongest extreme years for positive and negative phases of submonsoon contrast, respectively. The result confirms that the meridional dipole height pattern along the Asian Jet stream, which is caused by the strong zonal gradient of tropical SST, serves as a key trigger in strengthening the submonsoon contrast.


Theoretical and Applied Climatology | 2012

Dependency of typhoon intensity and genesis locations on El Niño phase and SST shift over the western North Pacific

Kyung-Ja Ha; Soon-Jo Yoon; Kyung-Sook Yun; Jong-Seong Kug; Yeon-Soo Jang; Johnny C. L. Chan

The effects of the El Niño-Southern Oscillation (ENSO) phase and the shifting of the ENSO sea surface temperature (SST) on the intensity of tropical cyclones (TC) have been extensively investigated in terms of TC genesis locations in the western North Pacific (WNP). To advance the hypothesis for a relation of genesis location–intensity that the TC formation location hints its intensity, two cases have been compared, which include the phase of the decaying El Niño turning over to La Niña (type I) and the phase that recovers to a neutral condition (type II). In addition, the shift of ENSO SST to the central Pacific warming (CPW) from the East Pacific warming (EPW) has been examined. The genesis potential index (GPI) and the accumulated cyclone energy have been applied to compare the differences between the ENSO phase and the TC formation location. It was apparent that ENSO influences the WNP typhoon formation location depending on the cycle of the ENSO phase. In addition, the typhoon activity was affected by the zonal shift of the El Niño SST. The CPW, which has maximum SST over the central Pacific, tends to have a persistently high GPI over the WNP in September–November and June–August, demonstrating that the formation locations of strong TCs significantly shift southeastward compared with the EPW having SST maximum over the eastern Pacific. CPW years revealed a distinguishable relationship between the TC formation location and the TC between the tropical depression (TD) + tropical storm (TS) and the intense typhoon of category 4 + 5.


Asia-pacific Journal of Atmospheric Sciences | 2017

The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit

June-Yi Lee; MinHo Kwon; Kyung-Sook Yun; Seung-Ki Min; In-Hong Park; Yoo-Geun Ham; Emilia Kyung Jin; Joo-Hong Kim; Kyong-Hwan Seo; WonMoo Kim; So-Young Yim; Jin-Ho Yoon

Changma, which is a vital part of East Asian summer monsoon (EASM) system, plays a critical role in modulating water and energy cycles in Korea. Better understanding of its long-term variability and change is therefore a matter of scientific and societal importance. It has been indicated that characteristics of Changma have undergone significant interdecadal changes in association with the mid-1970s global-scale climate shift and the mid-1990s EASM shift. This paper reviews and revisits the characteristics on the long-term changes of Changma focusing on the underlying mechanisms for the changes. The four important features are manifested mainly during the last few decades: 1) mean and extreme rainfalls during Changma period from June to September have been increased with the amplification of diurnal cycle of rainfall, 2) the dry spell between the first and second rainy periods has become shorter, 3) the rainfall amount as well as the number of rainy days during August have significantly increased, probably due to the increase in typhoon landfalls, and 4) the relationship between the Changma rainfall and Western Pacific Subtropical High on interannual time scale has been enhanced. The typhoon contribution to the increase in heavy rainfall is attributable to enhanced interaction between typhoons and midlatitude baroclinic environment. It is noted that the change in the relationship between Changma and the tropical sea surface temperature (SST) over the Indian, Pacific, and Atlantic Oceans is a key factor in the long-term changes of Changma and EASM. Possible sources for the recent mid-1990s change include 1) the tropical dipole-like SST pattern between the central Pacific and Indo-Pacific region (the global warming hiatus pattern), 2) the recent intensification of tropical SST gradients among the Indian Ocean, the western Pacific, and the eastern Pacific, and 3) the tropical Atlantic SST warming.


Journal of Climate | 2016

Intensification of the Western North Pacific Anticyclone Response to the Short Decaying El Niño Event due to Greenhouse Warming

Wei Chen; June-Yi Lee; Kyung-Ja Ha; Kyung-Sook Yun; Riyu Lu

AbstractTwo types of El Nino evolution have been identified in terms of the lengths of their decaying phases: the first type is a short decaying El Nino that terminates in the following summer after the mature phase, and the second type is a long decaying one that persists until the subsequent winter. The responses of the western North Pacific anticyclone (WNPAC) anomaly to the two types of evolution are remarkably different. Using experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5), this study investigates how well climate models reproduce the two types of El Nino evolution and their impacts on the WNPAC in the historical period (1950–2005) and how they will change in the future under anthropogenic global warming. To reduce uncertainty in future projection, the nine best models are selected based on their performance in simulating El Nino evolution. In the historical run, the nine best models’ multimodel ensemble (B9MME) well reproduces the enhanced (weakened) WNPAC that is asso...


Theoretical and Applied Climatology | 2012

Climate change effects on tropical night days in Seoul, Korea

Kyung-Ja Ha; Kyung-Sook Yun

In Seoul (37.57°N, 126.97°E), South Korea (located at mid-latitudes), the frequency of tropical night (TN) days, which have been defined as days with a minimum temperature greater than 25°C, have shown an increase due to the effects of temperature and water vapor. It was found that TN days accounted for almost 10.2% (July) and 22.1% (August) of the total number of days in respective months during the last decade in Seoul, and these figures may be increasing with climatic change. The daytime and nighttime sky on TN days can contain water vapor when the monsoonal southwesterly flow prevails. This strong wind may induce moisture advection from the warm ocean, and consequently, there is much larger specific humidity over the city during TN days in comparison to non-TN days. The effect of climatic change on the specific humidity is related to an increase in the number of TN days, which has shown an upward trend of 13-day/100-year and is significantly modulated by both water vapor and air temperature during July and August. Moreover, the relative role of water vapor in increasing the frequency of TN days has become much more significant after the 1960s in comparison to that of air temperature, which may be attributed to urbanization in Seoul since the 1960s.


Asia-pacific Journal of Atmospheric Sciences | 2014

Interdecadal Changes in the Asian Winter Monsoon Variability and Its Relationship with ENSO and AO

Kyung-Sook Yun; Ye-Won Seo; Kyung-Ja Ha; June-Yi Lee; Yoshiyuki Kajikawa

Interdecadal changes in the Asian winter monsoon (AWM) variability are investigated using three surface air temperature datasets for the 55-year period of 1958–2012 from (1) the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis 1 (NCEP), (2) combined datasets from the European Centre for Medium-range Weather Forecasts (ECMWF) 40-yr reanalysis and interim data (ERA), and (3) Japanese 55-year reanalysis (JRA). Particular attention has been paid to the first four empirical orthogonal function (EOF) modes of the AWM temperature variability that together account for 64% of the total variance and have been previously identified as predictable modes. The four modes are characterized as follows: the first mode by a southern warming over the Indo-western Pacific Ocean associated with a gradually increasing basin-wide warming trend; the second mode by northern warming with the interdecadal change after the late 1980s; the third and fourth modes by north-south triple pattern, which reveal a phase shift after the late 1970s. The three reanalyses agree well with each other when producing the first three modes, but show large discrepancy in capturing both spatial and temporal characteristics of the fourth mode. It is therefore considered that the first three leading modes are more reliable than the rest higher modes. Considerable interdecadal changes are found mainly in the first two modes. While the first mode shows gradually decreasing variance, the second mode exhibits larger interannual variance during the recent decade. In addition, after the late 1970s, the first mode has a weakening relationship with the El Niño-Southern Oscillation (ENSO) whereas the second mode has strengthening association with the Artic Oscillation (AO). This indicates an increasing role of AO but decreasing role of ENSO on the AWM variability. A better understanding of the interdecadal change in the dominant modes would contribute toward advancing in seasonal prediction and the predictability of the AWM variability.


Asia-pacific Journal of Atmospheric Sciences | 2014

Future Change of extreme temperature climate indices over East Asia with uncertainties estimation in the CMIP5

Ye-Won Seo; Hojin Kim; Kyung-Sook Yun; June-Yi Lee; Kyung-Ja Ha; Ja-Yeon Moon

How well the climate models simulate extreme temperature over East Asia and how the extreme indices would change under anthropogenic global warming are investigated. The indices studied include hot days (HD), tropical nights (TN), growing degree days (GDD), and cooling degree days (CDD) in summer and heating degree days (HDD) and frost days (FD) in winter. The representative concentration pathway 4.5 (RCP 4.5) experiments for the period of 2075–2099 are compared with historical simulations for the period of 1979–2005 from 15 coupled models that are participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). To optimally estimate future change and its uncertainty, groups of best models are selected based on Taylor diagrams, relative entropy, and probability density function (PDF) methods previously suggested. Overall, the best models’ multi-model ensemble based on Taylor diagrams has the lowest errors in reproducing temperature extremes in the present climate among three methods. Selected best models in three methods tend to project considerably different changes in the extreme indices from each other, indicating that the selection of reliable models are of critical importance to reduce uncertainties. Three groups of best models show significant increase of summerbased indices but decrease of the winter-based indices. Over East Asia, the most significant increase is seen in the HD (336 ± 23.4% of current climate) and the most significant decrease is appeared in the HDD (82 ± 4.2%). It is suggested that the larger future change in the HD is found over in the Southeastern China region, probably due to a higher local maximum temperature in the present climate. All of the indices show the largest uncertainty over Southeastern China, particularly in the TN (~3.9 times as large as uncertainty over East Asia) and in the HD (~2.4). It is further noted that the TN reveals the largest uncertainty over three East Asian countries (~1.7 and 1.4 over Korea and Japan, respectively). These future changes in extreme temperature events have an important implication for energy-saving applications and human molarity in the future.

Collaboration


Dive into the Kyung-Sook Yun's collaboration.

Top Co-Authors

Avatar

Kyung-Ja Ha

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

June-Yi Lee

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Ye-Won Seo

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Kyong-Hwan Seo

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Bin Wang

Nanjing University of Information Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jung-Eun Chu

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jong-Ghap Jhun

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Seong-Yeol Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Akio Kitoh

Japan Meteorological Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge