Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyung U. Hong is active.

Publication


Featured researches published by Kyung U. Hong.


PLOS ONE | 2014

c-kit+ Cardiac Stem Cells Alleviate Post-Myocardial Infarction Left Ventricular Dysfunction Despite Poor Engraftment and Negligible Retention in the Recipient Heart

Kyung U. Hong; Yiru Guo; Qian Hong Li; Pengxiao Cao; Tareq Al-Maqtari; Bathri N. Vajravelu; Junjie Du; Michael Book; Xiaoping Zhu; Yibing Nong; Aruni Bhatnagar; Roberto Bolli

Although transplantation of c-kit+ cardiac stem cells (CSCs) has been shown to alleviate left ventricular (LV) dysfunction induced by myocardial infarction (MI), the number of exogenous CSCs remaining in the recipient heart following transplantation and their mechanism of action remain unclear. We have previously developed a highly sensitive and accurate method to quantify the absolute number of male murine CSCs in female recipient organs after transplantation. In the present study, we used this method to monitor the number of donor CSCs in the recipient heart after intracoronary infusion. Female mice underwent a 60-min coronary occlusion followed by reperfusion; 2 days later, 100,000 c-kit+/lin- syngeneic male mouse CSCs were infused intracoronarily. Only 12.7% of the male CSCs present in the heart immediately (5 min) after infusion were still present in the heart at 24 h, and their number declined rapidly thereafter. By 35 days after infusion, only ∼1,000 male CSCs were found in the heart. Significant numbers of male CSCs were found in the lungs and kidneys, but only in the first 24 h. The number of CSCs in the lungs increased between 5 min and 24 h after infusion, indicating recirculation of CSCs initially retained in other organs. Despite the low retention and rapid disappearance of CSCs from the recipient heart, intracoronary delivery of CSCs significantly improved LV function at 35 days (Millar catheter). These results suggest that direct differentiation of CSCs alone cannot account for the beneficial effects of CSCs on LV function; therefore, paracrine effects must be the major mechanism. The demonstration that functional improvement is dissociated from survival of transplanted cells has major implications for our understanding of cell therapy. In addition, this new quantitative method of stem cell measurement will be useful in testing approaches of enhancing CSC engraftment and survival after transplantation.


Circulation Research | 2016

Repeated Administrations of Cardiac Progenitor Cells Are Markedly More Effective Than a Single Administration: A New Paradigm in Cell Therapy

Yukichi Tokita; Xian Liang Tang; Qianhong Li; Marcin Wysoczynski; Kyung U. Hong; Roberto Bolli; Shunichi Nakamura; Wen Jian Wu; Wei Xie; Ding Li; Greg Hunt; Qinghui Ou; Heather Stowers

RATIONALE The effects of c-kit(POS) cardiac progenitor cells (CPCs, and adult cell therapy in general) on left ventricular (LV) function have been regarded as modest or inconsistent. OBJECTIVE To determine whether 3 CPC infusions have greater efficacy than 1 infusion. METHODS AND RESULTS Rats with a 30-day-old myocardial infarction received 1 or 3 CPC infusions into the LV cavity, 35 days apart. Compared with vehicle-treated rats, the single-dose group exhibited improved LV function after the first infusion (consisting of CPCs) but not after the second and third (vehicle). In contrast, in the multiple-dose group, regional and global LV function improved by a similar degree after each CPC infusion, resulting in greater cumulative effects. For example, the total increase in LV ejection fraction was approximately triple in the multiple-dose group versus the single-dose group (P<0.01). The multiple-dose group also exhibited more viable tissue and less scar, less collagen in the risk and noninfarcted regions, and greater myocyte density in the risk region. CONCLUSIONS This is the first demonstration that repeated CPC administrations are markedly more effective than a single administration. The concept that the full effects of CPCs require repeated doses has significant implications for both preclinical and clinical studies; it suggests that the benefits of cell therapy may be underestimated or even overlooked if they are measured after a single dose, and that repeated administrations are necessary to evaluate the effectiveness of a cell product properly. In addition, we describe a new method that enables studies of repeated cell administrations in rodents.


Journal of Biological Chemistry | 2014

MicroRNA-539 is up-regulated in failing heart, and suppresses O-GlcNAcase expression.

Senthilkumar Muthusamy; Angelica M. DeMartino; Lewis J. Watson; Kenneth R. Brittian; Ayesha Zafir; Sujith Dassanayaka; Kyung U. Hong; Steven P. Jones

Background: Protein O-GlcNAcylation is nearly ubiquitous; however, regulation of the expression of key enzymes remains unknown. Results: miR-539 is up-regulated in the failing heart, binds to the 3′UTR, and negatively regulates O-GlcNAcase expression. Conclusion: Protein O-GlcNAcylation can be regulated by post-transcriptional mechanisms. Significance: miR-539 regulates one of the two enzymes responsible for O-GlcNAcylation in multicellular eukaryotes. Derangements in metabolism and related signaling pathways characterize the failing heart. One such signal, O-linked β-N-acetylglucosamine (O-GlcNAc), is an essential post-translational modification regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase (OGA), which modulate the function of many nuclear and cytoplasmic proteins. We recently reported reduced OGA expression in the failing heart, which is consistent with the pro-adaptive role of increased O-GlcNAcylation during heart failure; however, molecular mechanisms regulating these enzymes during heart failure remain unknown. Using miRNA microarray analysis, we observed acute and chronic changes in expression of several miRNAs. Here, we focused on miR-539 because it was predicted to target OGA mRNA. Indeed, co-transfection of the OGA-3′UTR containing reporter plasmid and miR-539 overexpression plasmid significantly reduced reporter activity. Overexpression of miR-539 in neonatal rat cardiomyocytes significantly suppressed OGA expression and consequently increased O-GlcNAcylation; conversely, the miR-539 inhibitor rescued OGA protein expression and restored O-GlcNAcylation. In conclusion, this work identifies the first target of miR-539 in the heart and the first miRNA that regulates OGA. Manipulation of miR-539 may represent a novel therapeutic target in the treatment of heart failure and other metabolic diseases.


Stem Cells | 2015

Glutamine Regulates Cardiac Progenitor Cell Metabolism and Proliferation

Joshua K. Salabei; Pawel Lorkiewicz; Candice R. Holden; Qianhong Li; Kyung U. Hong; Roberto Bolli; Aruni Bhatnagar; Bradford G. Hill

Autologous transplantation of cardiac progenitor cells (CPCs) alleviates myocardial dysfunction in the damaged heart; however, the mechanisms that contribute to their reparative qualities remain poorly understood. In this study, we examined CPC metabolism to elucidate the metabolic pathways that regulate their proliferative capacity. In complete growth medium, undifferentiated CPCs isolated from adult mouse heart proliferated rapidly (Td = 13.8 hours). CPCs expressed the Glut1 transporter and their glycolytic rate was increased by high extracellular glucose (Glc) concentration, in the absence of insulin. Although high Glc concentrations did not stimulate proliferation, glutamine (Gln) increased CPC doubling time and promoted survival under conditions of oxidative stress. In comparison with Glc, pyruvate (Pyr) or BSA‐palmitate, Gln, when provided as the sole metabolic substrate, increased ATP‐linked and uncoupled respiration. Although fatty acids were not used as respiratory substrates when present as a sole carbon source, Gln‐induced respiration was doubled in the presence of BSA‐palmitate, suggesting that Gln stimulates fatty acid oxidation. Additionally, Gln promoted rapid phosphorylation of the mTORC1 substrate, p70S6k, as well as retinoblastoma protein, followed by induction of cyclin D1 and cdk4. Inhibition of either mTORC1 or glutaminolysis was sufficient to diminish CPC proliferation, and provision of cell permeable α‐ketoglutarate in the absence of Gln increased both respiration and cell proliferation, indicating a key role of Gln anaplerosis in cell growth. These findings suggest that Gln, by enhancing mitochondrial function and stimulating mTORC1, increases CPC proliferation, and that interventions to increase Gln uptake or oxidation may improve CPC therapy. Stem Cells 2015;33:2613—2627


PLOS ONE | 2015

Safety of Intracoronary Infusion of 20 Million C-Kit Positive Human Cardiac Stem Cells in Pigs

Matthew C L Keith; Xian Liang Tang; Yukichi Tokita; Qian Hong Li; Shahab Ghafghazi; Joseph B. Moore; Kyung U. Hong; Brandon J Elmore; Alok R. Amraotkar; Brian L. Ganzel; Kendra J. Grubb; Michael P. Flaherty; Gregory N. Hunt; Bathri N. Vajravelu; Marcin Wysoczynski; Roberto Bolli

Background There is mounting interest in using c-kit positive human cardiac stem cells (c-kitpos hCSCs) to repair infarcted myocardium in patients with ischemic cardiomyopathy. A recent phase I clinical trial (SCIPIO) has shown that intracoronary infusion of 1 million hCSCs is safe. Higher doses of CSCs may provide superior reparative ability; however, it is unknown if doses >1 million cells are safe. To address this issue, we examined the effects of 20 million hCSCs in pigs. Methods Right atrial appendage samples were obtained from patients undergoing cardiac surgery. The tissue was processed by an established protocol with eventual immunomagnetic sorting to obtain in vitro expanded hCSCs. A cumulative dose of 20 million cells was given intracoronarily to pigs without stop flow. Safety was assessed by measurement of serial biomarkers (cardiac: troponin I and CK-MB, renal: creatinine and BUN, and hepatic: AST, ALT, and alkaline phosphatase) and echocardiography pre- and post-infusion. hCSC retention 30 days after infusion was quantified by PCR for human genomic DNA. All personnel were blinded as to group assignment. Results Compared with vehicle-treated controls (n=5), pigs that received 20 million hCSCs (n=9) showed no significant change in cardiac function or end organ damage (assessed by organ specific biomarkers) that could be attributed to hCSCs (P>0.05 in all cases). No hCSCs could be detected in left ventricular samples 30 days after infusion. Conclusions Intracoronary infusion of 20 million c-kit positive hCSCs in pigs (equivalent to ~40 million hCSCs in humans) does not cause acute cardiac injury, impairment of cardiac function, or liver and renal injury. These results have immediate translational value and lay the groundwork for using doses of CSCs >1 million in future clinical trials. Further studies are needed to ascertain whether administration of >1 million hCSCs is associated with greater efficacy in patients with ischemic cardiomyopathy.


PLOS ONE | 2015

C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways

Bathri N. Vajravelu; Kyung U. Hong; Tareq Al-Maqtari; Pengxiao Cao; Matthew C L Keith; Marcin Wysoczynski; John Zhao; Joseph B. Moore; Roberto Bolli

A recent phase I clinical trial (SCIPIO) has shown that autologous c-kit+ cardiac progenitor cells (CPCs) improve cardiac function and quality of life when transplanted into patients with ischemic heart disease. Although c-kit is widely used as a marker of resident CPCs, its role in the regulation of the cellular characteristics of CPCs remains unknown. We hypothesized that c-kit plays a role in the survival, growth, and migration of CPCs. To test this hypothesis, human CPCs were grown under stress conditions in the presence or absence of SCF, and the effects of SCF-mediated activation of c-kit on CPC survival/growth and migration were measured. SCF treatment led to a significant increase in cell survival and a reduction in cell death under serum depletion conditions. In addition, SCF significantly promoted CPC migration in vitro. Furthermore, the pro-survival and pro-migratory effects of SCF were augmented by c-kit overexpression and abrogated by c-kit inhibition with imatinib. Mechanistically, c-kit activation in CPCs led to activation of the PI3K and the MAPK pathways. With the use of specific inhibitors, we confirmed that the SCF/c-kit-dependent survival and chemotaxis of CPCs are dependent on both pathways. Taken together, our findings suggest that c-kit promotes the survival/growth and migration of human CPCs cultured ex vivo via the activation of PI3K and MAPK pathways. These results imply that the efficiency of CPC homing to the injury site as well as their survival after transplantation may be improved by modulating the activity of c-kit.


Frontiers in Cell and Developmental Biology | 2015

Epigenetic reprogramming and re-differentiation of a Ewing sarcoma cell line.

Joseph B. Moore; David M. Loeb; Kyung U. Hong; Poul H. Sorensen; Timothy J. Triche; David W. Lee; Michael I. Barbato; Robert J. Arceci

Developmental reprogramming techniques have been used to generate induced pluripotent stem (iPS) cells from both normal and malignant cells. The derivation of iPS cells from cancer has the potential to provide a unique scientific tool to overcome challenges associated with the establishment of cell lines from primary patient samples and a readily expandable source of cells that may be used to model the initial disease. In the current study we developmentally reprogrammed a metastatic Ewing sarcoma (EWS) cell line to a meta-stable embryonic stem (ES)-like state sharing molecular and phenotypic features with previously established ES and iPS cell lines. EWS-iPS cells exhibited a pronounced drug resistant phenotype despite persistent expression of the oncogenic EWS-FLI1 fusion transcript. This included resistance to compounds that specifically target downstream effector pathways of EWS-FLI1, such as MAPK/ERK and PI3K/AKT, which play an important role in EWS pathogenesis. EWS-iPS cells displayed tumor initiation abilities in vivo and formed tumors exhibiting characteristic Ewing histopathology. In parallel, EWS-iPS cells re-differentiated in vitro recovered sensitivity to molecularly targeted chemotherapeutic agents, which reiterated pathophysiological features of the cells from which they were derived. These data suggest that EWS-iPS cells may provide an expandable disease model that could be used to investigate processes modulating oncogenesis, metastasis, and chemotherapeutic resistance in EWS.


Journal of Biological Chemistry | 2015

E2F1 Transcription Factor Regulates O-linked N-acetylglucosamine (O-GlcNAc) Transferase and O-GlcNAcase Expression.

Senthilkumar Muthusamy; Kyung U. Hong; Sujith Dassanayaka; Tariq Hamid; Steven P. Jones

Protein O-GlcNAcylation, which is controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), has emerged as an important posttranslational modification that may factor in multiple diseases. Until recently, it was assumed that OGT/OGA protein expression was relatively constant. Several groups, including ours, have shown that OGT and/or OGA expression changes in several pathologic contexts, yet the cis and trans elements that regulate the expression of these enzymes remain essentially unexplored. Here, we used a reporter-based assay to analyze minimal promoters and leveraged in silico modeling to nominate several candidate transcription factor binding sites in both Ogt (i.e. the gene for OGT protein) and Mgea5 (i.e. the gene for OGA protein). We noted multiple E2F binding site consensus sequences in both promoters. We performed chromatin immunoprecipitation in both human and mouse cells and found that E2F1 bound to candidate E2F binding sites in both promoters. In HEK293 cells, we overexpressed E2F1, which significantly reduced OGT and MGEA5 expression. Conversely, E2F1-deficient mouse fibroblasts had increased Ogt and Mgea5 expression. Of the known binding partners for E2F1, we queried whether retinoblastoma 1 (Rb1) might be involved. Rb1-deficient mouse embryonic fibroblasts showed increased levels of Ogt and Mgea5 expression, yet overexpression of E2F1 in the Rb1-deficient cells did not alter Ogt and Mgea5 expression, suggesting that Rb1 is required for E2F1-mediated suppression. In conclusion, this work identifies and validates some of the promoter elements for mouse Ogt and Mgea5 genes. Specifically, E2F1 negatively regulates both Ogt and Mgea5 expression in an Rb1 protein-dependent manner.


Journal of Biological Chemistry | 2015

E2F1 transcription factor regulates O-GlcNAc transferase and O-GlcNAcase expression

Senthilkumar Muthusamy; Kyung U. Hong; Sujith Dassanayaka; Tariq Hamid; Steven P. Jones

Protein O-GlcNAcylation, which is controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), has emerged as an important posttranslational modification that may factor in multiple diseases. Until recently, it was assumed that OGT/OGA protein expression was relatively constant. Several groups, including ours, have shown that OGT and/or OGA expression changes in several pathologic contexts, yet the cis and trans elements that regulate the expression of these enzymes remain essentially unexplored. Here, we used a reporter-based assay to analyze minimal promoters and leveraged in silico modeling to nominate several candidate transcription factor binding sites in both Ogt (i.e. the gene for OGT protein) and Mgea5 (i.e. the gene for OGA protein). We noted multiple E2F binding site consensus sequences in both promoters. We performed chromatin immunoprecipitation in both human and mouse cells and found that E2F1 bound to candidate E2F binding sites in both promoters. In HEK293 cells, we overexpressed E2F1, which significantly reduced OGT and MGEA5 expression. Conversely, E2F1-deficient mouse fibroblasts had increased Ogt and Mgea5 expression. Of the known binding partners for E2F1, we queried whether retinoblastoma 1 (Rb1) might be involved. Rb1-deficient mouse embryonic fibroblasts showed increased levels of Ogt and Mgea5 expression, yet overexpression of E2F1 in the Rb1-deficient cells did not alter Ogt and Mgea5 expression, suggesting that Rb1 is required for E2F1-mediated suppression. In conclusion, this work identifies and validates some of the promoter elements for mouse Ogt and Mgea5 genes. Specifically, E2F1 negatively regulates both Ogt and Mgea5 expression in an Rb1 protein-dependent manner.


Stem Cells | 2016

The Epigenetic Regulator HDAC1 Modulates Transcription of a Core Cardiogenic Program in Human Cardiac Mesenchymal Stromal Cells Through a p53‐Dependent Mechanism

Joseph B. Moore; John Zhao; Matthew C L Keith; Alok R. Amraotkar; Marcin Wysoczynski; Kyung U. Hong; Roberto Bolli

Histone deacetylase (HDAC) regulation is an essential process in myogenic differentiation. Inhibitors targeting the activity of specific HDAC family members have been shown to enhance the cardiogenic differentiation capacity of discrete progenitor cell types; a key property of donor cell populations contributing to their afforded benefits in cardiac cell therapy applications. The influence of HDAC inhibition on cardiac‐derived mesenchymal stromal cell (CMC) transdifferentiation or the role of specific HDAC family members in dictating cardiovascular cell lineage specification has not been investigated. In the current study, the consequences of HDAC inhibition on patient‐derived CMC proliferation, cardiogenic program activation, and cardiovascular differentiation/cell lineage specification were investigated using pharmacologic and genetic targeting approaches. Here, CMCs exposed to the pan‐HDAC inhibitor sodium butyrate exhibited induction of a cardiogenic transcriptional program and heightened expression of myocyte and endothelial lineage‐specific markers when coaxed to differentiate in vitro. Further, shRNA knockdown screens revealed CMCs depleted of HDAC1 to promote the induction of a cardiogenic transcriptional program characterized by enhanced expression of cardiomyogenic‐ and vasculogenic‐specific markers, a finding which depended on and correlated with enhanced acetylation and stabilization of p53. Cardiogenic gene activation and elevated p53 expression levels observed in HDAC1‐depleted CMCs were associated with improved aptitude to assume a cardiomyogenic/vasculogenic cell‐like fate in vitro. These results suggest that HDAC1 depletion‐induced p53 expression alters CMC cell fate decisions and identify HDAC1 as a potential exploitable target to facilitate CMC‐mediated myocardial repair in ischemic cardiomyopathy. Stem Cells 2016;34:2916–2929

Collaboration


Dive into the Kyung U. Hong's collaboration.

Top Co-Authors

Avatar

Roberto Bolli

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yukichi Tokita

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qianhong Li

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge