Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Asbjørn Vøllestad is active.

Publication


Featured researches published by L. Asbjørn Vøllestad.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Trait changes in a harvested population are driven by a dynamic tug-of-war between natural and harvest selection

Eric Edeline; Stephanie M. Carlson; Leif Christian Stige; Ian J. Winfield; Janice M. Fletcher; J. Ben James; Thrond O. Haugen; L. Asbjørn Vøllestad; Nils Chr. Stenseth

Selective harvest of large individuals should alter natural adaptive landscapes and drive evolution toward reduced somatic growth and increased reproductive investment. However, few studies have simultaneously considered the relative importance of artificial and natural selection in driving trait changes in wild populations. Using 50 years of individual-based data on Windermere pike (Esox lucius), we show that trait changes tracked the adaptive peak, which moved in the direction imposed by the dominating selective force. Individual lifetime somatic growth decreased at the start of the time series because harvest selection was strong and natural selection was too weak to override the strength of harvest selection. However, natural selection favoring fast somatic growth strengthened across the time series in parallel with the increase in pike abundance and, presumably, cannibalism. Harvest selection was overridden by natural selection when the fishing effort dwindled, triggering a rapid increase in pike somatic growth. The two selective forces appear to have acted in concert during only one short period of prey collapse that favored slow-growing pike. Moreover, increased somatic growth occurred concurrently with a reduction in reproductive investment in young and small female pike, indicating a tradeoff between growth and reproduction. The age-specific amplitude of this change paralleled the age-specific strength of harvest pressure, suggesting that reduced investment was also a response to increased life expectancy. This is the first study to demonstrate that a consideration of both natural selection and artificial selection is needed to fully explain time-varying trait dynamics in harvested populations.


Environmental Pollution | 1997

Toxicity of acid aluminium-rich water to seven freshwater fish species: a comparative laboratory study.

Antonio B.S. Poléo; Kjartan Østbye; Sigurd A. Øxnevad; Ronny A. Andersen; Erik Heibo; L. Asbjørn Vøllestad

The present study focuses on the relative sensitivity among freshwater fish species to aqueous aluminium. Seven common Scandinavian fish species were exposed to acidic Al-rich water, acidic Al-poor water, and approximately neutral water as a control. The relative sensitivity among the species to an acute aluminium challenge was documented, and was in the following order: Atlantic salmon, Salmo salar, as the most sensitive; then roach, Rutilus rutilus; minnow, Phoxinus phoxinus; perch, Perca fluviatilis; grayling, Thymallus thymallus; brown trout, Salmo trutta; and Arctic char, Salvelinus alpinus. Substantial mortality was observed in all species when exposed to the Al-rich medium. Some mortality was also observed in minnow, roach, and brown trout exposed to the acidic Al-poor medium and the control medium. A high resistance to aluminium was observed in Arctic char, while perch was found to be more sensitive to aluminium than expected and, for the first time, a toxic response to aqueous aluminium in grayling was documented. Through controlled experimental studies, the results confirm that aluminium is an important factor in the toxicity of acidified waters to freshwater fish species.


Proceedings of the Royal Society of London B: Biological Sciences | 2006

The ideal free pike: 50 years of fitness-maximizing dispersal in Windermere.

Thrond O. Haugen; Ian J. Winfield; L. Asbjørn Vøllestad; Janice M. Fletcher; J. Ben James; Nils Chr. Stenseth

The ideal free distribution (IFD) theory is one of the most influential theories in evolutionary ecology. It predicts how animals ought to distribute themselves within a heterogeneous habitat in order to maximize lifetime fitness. We test the population level consequence of the IFD theory using 40-year worth data on pike (Esox lucius) living in a natural lake divided into two basins. We do so by employing empirically derived density-dependent survival, dispersal and fecundity functions in the estimation of basin-specific density-dependent fitness surfaces. The intersection of the fitness surfaces for the two basins is used for deriving expected spatial distributions of pike. Comparing the derived expected spatial distributions with 50 years data of the actual spatial distribution demonstrated that pike is ideal free distributed within the lake. In general, there was a net migration from the less productive north basin to the more productive south basin. However, a pike density-manipulation experiment imposing shifting pike density gradients between the two basins managed to switch the net migration direction and hence clearly demonstrated that the Windermere pike choose their habitat in an ideal free manner. Demonstration of ideal free habitat selection on an operational field scale like this has never been undertaken before.


BMC Evolutionary Biology | 2010

Contemporary temperature-driven divergence in a nordic freshwater fish under conditions commonly thought to hinder adaptation.

Kathryn Kavanagh; Thrond O. Haugen; F. Gregersen; Jukka Jernvall; L. Asbjørn Vøllestad

BackgroundEvaluating the limits of adaptation to temperature is important given the IPCC-predicted rise in global temperatures. The rate and scope of evolutionary adaptation can be limited by low genetic diversity, gene flow, and costs associated with adaptive change. Freshwater organisms are physically confined to lakes and rivers, and must therefore deal directly with climate variation and change. In this study, we take advantage of a system characterised by low genetic variation, small population size, gene flow and between-trait trade-offs to study how such conditions affect the ability of a freshwater fish to adapt to climate change. We test for genetically-based differences in developmental traits indicating local adaptation, by conducting a common-garden experiment using embryos and larvae from replicate pairs of sympatric grayling demes that spawn and develop in natural cold and warm water, respectively. These demes have common ancestors from a colonization event 22 generations ago. Consequently, we explore if diversification may occur under severely constraining conditions.ResultsWe found evidence for divergence in ontogenetic rates. The divergence pattern followed adaptation predictions as cold-deme individuals displayed higher growth rates and yolk conversion efficiency than warm-deme individuals at the same temperature. The cold-deme embryos had a higher rate of muscle mass development. Most of the growth- and development differences occurred prior to hatch. The divergence was probably not caused by genetic drift as there was a strong degree of parallelism in the divergence pattern and because phenotypic differentiation (QST) was larger than estimated genetic drift levels (microsatellite FST) between demes from different temperature groups. We also document that these particular grayling populations cannot develop successfully at temperatures above 12°C, whereas other European populations can, and that increasing the muscle mass development rate comes at the cost of some skeletal trait development rates.ConclusionsThis study shows that genetically based phenotypic divergence can prevail even under conditions of low genetic variation and ongoing gene flow. Furthermore, population-specific maximum development temperatures along with musculoskeletal developmental trade-offs may constrain adaptation.


Molecular Ecology | 2011

Strong and consistent natural selection associated with armour reduction in sticklebacks

Arnaud Le Rouzic; Kjartan Østbye; Tom Klepaker; Thomas F. Hansen; Louis Bernatchez; Dolph Schluter; L. Asbjørn Vøllestad

Measuring the strength of natural selection is tremendously important in evolutionary biology, but remains a challenging task. In this work, we analyse the characteristics of selection for a morphological change (lateral‐plate reduction) in the threespine stickleback Gasterosteus aculeatus. Adaptation to freshwater, leading with the reduction or loss of the bony lateral armour, has occurred in parallel on numerous occasions in this species. Completely‐plated and low‐plated sticklebacks were introduced into a pond, and the phenotypic changes were tracked for 20 years. Fish from the last generation were genotyped for the Ectodysplasin‐A (Eda) locus, the major gene involved in armour development. We found a strong fitness advantage for the freshwater‐type fish (on average, 20% fitness advantage for the freshwater morph, and 92% for the freshwater genotype). The trend is best explained by assuming that this fitness advantage is maximum at the beginning of the invasion and decreases with time. Such fitness differences provide a quantifiable example of rapid selection‐driven phenotypic evolution associated with environmental change in a natural population.


Ecology | 2011

Stage‐specific biomass overcompensation by juveniles in response to increased adult mortality in a wild fish population

Jan Ohlberger; Øystein Langangen; Eric Edeline; David Claessen; Ian J. Winfield; Nils Chr. Stenseth; L. Asbjørn Vøllestad

Recently developed theoretical models of stage-structured consumer-resource systems have shown that stage-specific biomass overcompensation can arise in response to increased mortality rates. We parameterized a stage-structured population model to simulate the effects of increased adult mortality caused by a pathogen outbreak in the perch (Perca fluviatilis) population of Windermere (UK) in 1976. The model predicts biomass overcompensation by juveniles in response to increased adult mortality due to a shift in food-dependent growth and reproduction rates. Considering cannibalism between life stages in the model reinforces this compensatory response due to the release from predation on juveniles at high mortality rates. These model predictions are matched by our analysis of a 60-year time series of scientific monitoring of Windermere perch, which shows that the pathogen outbreak induced a strong decrease in adult biomass and a corresponding increase in juvenile biomass. Age-specific adult fecundity and size at age were higher after than before the disease outbreak, suggesting that the pathogen-induced mortality released adult perch from competition, thereby increasing somatic and reproductive growth. Higher juvenile survival after the pathogen outbreak due to a release from cannibalism likely contributed to the observed biomass overcompensation. Our findings have general implications for predicting population- and community-level responses to increased size-selective mortality caused by exploitation or disease outbreaks.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Antagonistic selection from predators and pathogens alters food-web structure

Eric Edeline; Tamara Ben Ari; L. Asbjørn Vøllestad; Ian J. Winfield; Janice M. Fletcher; J. Ben James; Nils Chr. Stenseth

Selection can alter predator-prey interactions. However, whether and how complex food-webs respond to selection remain largely unknown. We show in the field that antagonistic selection from predators and pathogens on prey body-size can be a primary driver of food-web functioning. In Windermere, U.K., pike (Esox lucius, the predator) selected against small perch (Perca fluviatilis, the prey), while a perch-specific pathogen selected against large perch. The strongest selective force drove perch trait change and ultimately determined the structure of trophic interactions. Before 1976, the strength of pike-induced selection overrode the strength of pathogen-induced selection and drove a change to larger, faster growing perch. Predation-driven increase in the proportion of large, infection-vulnerable perch presumably favored the pathogen since a peak in the predation pressure in 1976 coincided with pathogen expansion and a massive perch kill. After 1976, the strength of pathogen-induced selection overrode the strength of predator-induced selection and drove a rapid change to smaller, slower growing perch. These changes made perch easier prey for pike and weaker competitors against juvenile pike, ultimately increasing juvenile pike survival and total pike numbers. Therefore, although predators and pathogens exploited the same prey in Windermere, they did not operate competitively but synergistically by driving rapid prey trait change in opposite directions. Our study empirically demonstrates that a consideration of the relative strengths and directions of multiple selective pressures is needed to fully understand community functioning in nature.


Ecological Monographs | 2007

DENSITY DEPENDENCE AND DENSITY INDEPENDENCE IN THE DEMOGRAPHY AND DISPERSAL OF PIKE OVER FOUR DECADES

Thrond O. Haugen; Ian J. Winfield; L. Asbjørn Vøllestad; Janice M. Fletcher; J. Ben James; Nils Chr. Stenseth

Quantifying the effects of density-dependent and density-independent factors in demographic and dispersal processes remains a major challenge in population ecology. Based on unique long-term capture–mark–recapture (CMR) data (1949–2000) on pike (Esox lucius) from Windermere, United Kingdom, we provide estimates of density-dependent and density-independent effects, under the influence of individual size and sex, on natural survival, fishing mortality, and dispersal. Because survival is expected to be related to the individual growth process, we also explore the degree of parallelism between the two processes by applying the best-supported survival model structure to individual growth data. The CMR data were analyzed using sex- and age-structured multistate models (two lake basins: north and south) assuming no seasonal variation in survival and dispersal. Total survival and dispersal probabilities were insensitive to this assumption, and capture probability was shown to be robust to assumptions about intra-...


Proceedings of the Royal Society of London B: Biological Sciences | 2010

Body downsizing caused by non-consumptive social stress severely depresses population growth rate

Eric Edeline; Thrond O. Haugen; Finn-Arne Weltzien; David Claessen; Ian J. Winfield; Nils Chr. Stenseth; L. Asbjørn Vøllestad

Chronic social stress diverts energy away from growth, reproduction and immunity, and is thus a potential driver of population dynamics. However, the effects of social stress on demographic density dependence remain largely overlooked in ecological theory. Here we combine behavioural experiments, physiology and population modelling to show in a top predator (pike Esox lucius) that social stress alone may be a primary driver of demographic density dependence. Doubling pike density in experimental ponds under controlled prey availability did not significantly change prey intake by pike (i.e. did not significantly change interference or exploitative competition), but induced a neuroendocrine stress response reflecting a size-dependent dominance hierarchy, depressed pike energetic status and lowered pike body growth rate by 23 per cent. Assuming fixed size-dependent survival and fecundity functions parameterized for the Windermere (UK) pike population, stress-induced smaller body size shifts age-specific survival rates and lowers age-specific fecundity, which in Leslie matrices projects into reduced population rate of increase (λ) by 37–56%. Our models also predict that social stress flattens elasticity profiles of λ to age-specific survival and fecundity, thus making population persistence more dependent on old individuals. Our results suggest that accounting for non-consumptive social stress from competitors and predators is necessary to accurately understand, predict and manage food-web dynamics.


The American Naturalist | 2014

Effects of Climate Change on Trait-Based Dynamics of a Top Predator in Freshwater Ecosystems

Yngvild Vindenes; Eric Edeline; Jan Ohlberger; Øystein Langangen; Ian J. Winfield; Nils Chr. Stenseth; L. Asbjørn Vøllestad

Predicted universal responses of ectotherms to climate warming include increased maximum population growth rate and changes in body size through the temperature-size rule. However, the mechanisms that would underlie these predicted responses are not clear. Many studies have focused on proximate mechanisms of physiological processes affecting individual growth. One can also consider ultimate mechanisms involving adaptive explanations by evaluating temperature effects on different vital rates across the life history and using the information in a population dynamical model. Here, we combine long-term data for a top predator in freshwater ecosystems (pike; Esox lucius) with a stochastic integral projection model to analyze concurrent effects of temperature on vital rates, body size, and population dynamics. As predicted, the net effect of warming on population growth rate (fitness) is positive, but the thermal sensitivity of this rate is highly size- and vital rate–dependent. These results are not sensitive to increasing variability in temperature. Somatic growth follows the temperature-size rule, and our results support an adaptive explanation for this response. The stable length structure of the population shifts with warming toward an increased proportion of medium-sized but a reduced proportion of small and large individuals. This study highlights how demographic approaches can help reveal complex underlying mechanisms for population responses to warming.

Collaboration


Dive into the L. Asbjørn Vøllestad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thrond O. Haugen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Jan Ohlberger

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Claessen

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge