Thrond O. Haugen
Norwegian University of Life Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thrond O. Haugen.
Nature | 2002
Mikko Koskinen; Thrond O. Haugen; Craig R. Primmer
The relative importance of natural selection and random drift in phenotypic evolution has been discussed since the introduction of the first population genetic models. The empirical evidence used to evaluate the evolutionary theories of Fisher and Wright remains obscure because formal tests for neutral divergence or sensitive attempts to separate the effects of selection and drift are scarce, subject to error, and have not been interpreted in the light of well-known population demography. We combined quantitative genetic and microsatellite DNA analyses to investigate the determinants of contemporary life-history evolution in isolated populations of grayling (Thymallus thymallus, Salmonidae) that originated from a common source 80–120 years ago. Here we show that natural selection was the dominant diversifying agent in the evolution of the quantitative traits. However, the populations were founded by a small number of individuals, exhibit very low microsatellite-based effective sizes and show genetic imprints of severe ‘bottlenecks’; which are conditions often suggested to constrain selection and favour drift. This study demonstrates a very clear case of fisherian evolution in small natural populations across a contemporary timescale.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Eric Edeline; Stephanie M. Carlson; Leif Christian Stige; Ian J. Winfield; Janice M. Fletcher; J. Ben James; Thrond O. Haugen; L. Asbjørn Vøllestad; Nils Chr. Stenseth
Selective harvest of large individuals should alter natural adaptive landscapes and drive evolution toward reduced somatic growth and increased reproductive investment. However, few studies have simultaneously considered the relative importance of artificial and natural selection in driving trait changes in wild populations. Using 50 years of individual-based data on Windermere pike (Esox lucius), we show that trait changes tracked the adaptive peak, which moved in the direction imposed by the dominating selective force. Individual lifetime somatic growth decreased at the start of the time series because harvest selection was strong and natural selection was too weak to override the strength of harvest selection. However, natural selection favoring fast somatic growth strengthened across the time series in parallel with the increase in pike abundance and, presumably, cannibalism. Harvest selection was overridden by natural selection when the fishing effort dwindled, triggering a rapid increase in pike somatic growth. The two selective forces appear to have acted in concert during only one short period of prey collapse that favored slow-growing pike. Moreover, increased somatic growth occurred concurrently with a reduction in reproductive investment in young and small female pike, indicating a tradeoff between growth and reproduction. The age-specific amplitude of this change paralleled the age-specific strength of harvest pressure, suggesting that reduced investment was also a response to increased life expectancy. This is the first study to demonstrate that a consideration of both natural selection and artificial selection is needed to fully explain time-varying trait dynamics in harvested populations.
Journal of Evolutionary Biology | 2000
Thrond O. Haugen; Leif Asbjørn Vøllestad
In this paper we test population differences in early life‐history traits in three grayling Thymallus thymallus populations. The grayling shared ancestors some 80–90 years ago. We performed common‐garden experiments at three temperatures (mimicking population‐specific summer temperatures), and measured survival and growth rates during early development. We found significant additive genetic variance in size (length and yolk‐sac volume) measured at hatching, swim‐up and termination of the experiment, and significantly different reaction norms for growth rate and survival during the period of first feeding. In general, each population did best at the temperature experienced in nature. These differences in early life‐history traits suggest that natural selection has resulted in local adaptation in a time period of 13–18 generations.
Genetica | 2001
Thrond O. Haugen; Leif Asbjørn Vøllestad
Synchronic and allochronic data sets consisting of phenotypic values of various life-history traits from five grayling Thymallus thymallus populations with common ancestors were analysed for the purpose of estimating evolution and divergence rates. The synchronic data contained both juvenile and adult traits from populations that have been segregated for 44-88 years (9-22 generations). The allochronic time series contained growth- and maturation data spanning 95 years (16 generations). Estimated evolution and divergence rates were high compared with other life-history studies on the same temporal scale (0.002-1.008 haldanes, 10-30, 500 darwins). The divergence of adult traits were most probably caused by differential mortalities induced by variation in fishing intensity. For the population with allochronic data, 48 years (eight generations) of intense and consistent size-selective gillnet fishing resulted in a constant reduction in age (-0.33 years pr 10 year) and length (-18 mm pr 10 year) at maturity. Length-at-age for ages one to five also decreased during the same period. When gill-net fishing was relaxed, age and length at maturity and length-at-age increased. Divergence rates for juvenile traits derived from a common-garden experiment were high, and standardized selection differentials (s′) were high, especially for yolk-sac volume (s′ = 2.6). We also document that low divergence rates for juvenile traits were lower between populations having similar spawning/nursery habitats (running water) than populations having relatively different habitats (running water v.s. still water). We suggest that the major part of the observed phenotypic divergence is mostly due to adaptive evolution, although microsatellite data indicate that genetic drift also has occurred.
Proceedings of the Royal Society of London B: Biological Sciences | 2006
Thrond O. Haugen; Ian J. Winfield; L. Asbjørn Vøllestad; Janice M. Fletcher; J. Ben James; Nils Chr. Stenseth
The ideal free distribution (IFD) theory is one of the most influential theories in evolutionary ecology. It predicts how animals ought to distribute themselves within a heterogeneous habitat in order to maximize lifetime fitness. We test the population level consequence of the IFD theory using 40-year worth data on pike (Esox lucius) living in a natural lake divided into two basins. We do so by employing empirically derived density-dependent survival, dispersal and fecundity functions in the estimation of basin-specific density-dependent fitness surfaces. The intersection of the fitness surfaces for the two basins is used for deriving expected spatial distributions of pike. Comparing the derived expected spatial distributions with 50 years data of the actual spatial distribution demonstrated that pike is ideal free distributed within the lake. In general, there was a net migration from the less productive north basin to the more productive south basin. However, a pike density-manipulation experiment imposing shifting pike density gradients between the two basins managed to switch the net migration direction and hence clearly demonstrated that the Windermere pike choose their habitat in an ideal free manner. Demonstration of ideal free habitat selection on an operational field scale like this has never been undertaken before.
BMC Evolutionary Biology | 2010
Kathryn Kavanagh; Thrond O. Haugen; F. Gregersen; Jukka Jernvall; L. Asbjørn Vøllestad
BackgroundEvaluating the limits of adaptation to temperature is important given the IPCC-predicted rise in global temperatures. The rate and scope of evolutionary adaptation can be limited by low genetic diversity, gene flow, and costs associated with adaptive change. Freshwater organisms are physically confined to lakes and rivers, and must therefore deal directly with climate variation and change. In this study, we take advantage of a system characterised by low genetic variation, small population size, gene flow and between-trait trade-offs to study how such conditions affect the ability of a freshwater fish to adapt to climate change. We test for genetically-based differences in developmental traits indicating local adaptation, by conducting a common-garden experiment using embryos and larvae from replicate pairs of sympatric grayling demes that spawn and develop in natural cold and warm water, respectively. These demes have common ancestors from a colonization event 22 generations ago. Consequently, we explore if diversification may occur under severely constraining conditions.ResultsWe found evidence for divergence in ontogenetic rates. The divergence pattern followed adaptation predictions as cold-deme individuals displayed higher growth rates and yolk conversion efficiency than warm-deme individuals at the same temperature. The cold-deme embryos had a higher rate of muscle mass development. Most of the growth- and development differences occurred prior to hatch. The divergence was probably not caused by genetic drift as there was a strong degree of parallelism in the divergence pattern and because phenotypic differentiation (QST) was larger than estimated genetic drift levels (microsatellite FST) between demes from different temperature groups. We also document that these particular grayling populations cannot develop successfully at temperatures above 12°C, whereas other European populations can, and that increasing the muscle mass development rate comes at the cost of some skeletal trait development rates.ConclusionsThis study shows that genetically based phenotypic divergence can prevail even under conditions of low genetic variation and ongoing gene flow. Furthermore, population-specific maximum development temperatures along with musculoskeletal developmental trade-offs may constrain adaptation.
Heredity | 2011
Junge C; Leif Asbjørn Vøllestad; Nicola J. Barson; Thrond O. Haugen; Otero J; Glenn-Peter Sætre; Erica H. Leder; Craig R. Primmer
Gene flow has the potential to both constrain and facilitate adaptation to local environmental conditions. The early stages of population divergence can be unstable because of fluctuating levels of gene flow. Investigating temporal variation in gene flow during the initial stages of population divergence can therefore provide insights to the role of gene flow in adaptive evolution. Since the recent colonization of Lake Lesjaskogsvatnet in Norway by European grayling (Thymallus thymallus), local populations have been established in over 20 tributaries. Multiple founder events appear to have resulted in reduced neutral variation. Nevertheless, there is evidence for local adaptation in early life-history traits to different temperature regimes. In this study, microsatellite data from almost a decade of sampling were assessed to infer population structuring and its temporal stability. Several alternative analyses indicated that spatial variation explained 2–3 times more of the divergence in the system than temporal variation. Over all samples and years, there was a significant correlation between genetic and geographic distance. However, decomposed pairwise regression analysis revealed differing patterns of genetic structure among local populations and indicated that migration outweighs genetic drift in the majority of populations. In addition, isolation by distance was observable in only three of the six years, and signals of population bottlenecks were observed in the majority of samples. Combined, the results suggest that habitat-specific adaptation in this system has preceded the development of consistent population substructuring in the face of high levels of gene flow from divergent environments.
Ecological Monographs | 2007
Thrond O. Haugen; Ian J. Winfield; L. Asbjørn Vøllestad; Janice M. Fletcher; J. Ben James; Nils Chr. Stenseth
Quantifying the effects of density-dependent and density-independent factors in demographic and dispersal processes remains a major challenge in population ecology. Based on unique long-term capture–mark–recapture (CMR) data (1949–2000) on pike (Esox lucius) from Windermere, United Kingdom, we provide estimates of density-dependent and density-independent effects, under the influence of individual size and sex, on natural survival, fishing mortality, and dispersal. Because survival is expected to be related to the individual growth process, we also explore the degree of parallelism between the two processes by applying the best-supported survival model structure to individual growth data. The CMR data were analyzed using sex- and age-structured multistate models (two lake basins: north and south) assuming no seasonal variation in survival and dispersal. Total survival and dispersal probabilities were insensitive to this assumption, and capture probability was shown to be robust to assumptions about intra-...
Proceedings of the Royal Society of London B: Biological Sciences | 2010
Eric Edeline; Thrond O. Haugen; Finn-Arne Weltzien; David Claessen; Ian J. Winfield; Nils Chr. Stenseth; L. Asbjørn Vøllestad
Chronic social stress diverts energy away from growth, reproduction and immunity, and is thus a potential driver of population dynamics. However, the effects of social stress on demographic density dependence remain largely overlooked in ecological theory. Here we combine behavioural experiments, physiology and population modelling to show in a top predator (pike Esox lucius) that social stress alone may be a primary driver of demographic density dependence. Doubling pike density in experimental ponds under controlled prey availability did not significantly change prey intake by pike (i.e. did not significantly change interference or exploitative competition), but induced a neuroendocrine stress response reflecting a size-dependent dominance hierarchy, depressed pike energetic status and lowered pike body growth rate by 23 per cent. Assuming fixed size-dependent survival and fecundity functions parameterized for the Windermere (UK) pike population, stress-induced smaller body size shifts age-specific survival rates and lowers age-specific fecundity, which in Leslie matrices projects into reduced population rate of increase (λ) by 37–56%. Our models also predict that social stress flattens elasticity profiles of λ to age-specific survival and fecundity, thus making population persistence more dependent on old individuals. Our results suggest that accounting for non-consumptive social stress from competitors and predators is necessary to accurately understand, predict and manage food-web dynamics.
Evolutionary Applications | 2008
Thrond O. Haugen; Per Aass; Nils Christian Stenseth; Leif Asbjørn Vøllestad
Brown trout (Salmo trutta) are extensively harvested and its habitat highly influenced by human encroachments. Using a 40‐year time series of mark–recapture data we estimate vital rates for a piscivorous trout population. This population spawns upstream of a waterfall, which historically acted as a migration barrier for smaller trout. In 1966, the waterfall was dammed and a fish ladder constructed. All fish ascending the fish ladder were individually tagged and measured for a variety of traits. The fish ladder overall favoured access to upstream spawning areas for middle‐sized trout, resulting in stabilizing selection acting on size at spawning. Over time, natural and fishing mortality have varied, with fishing mortality generally decreasing and natural mortality increasing. The average and, particularly, variance in size‐at‐first‐spawning, and growth rates during the first years of lake residence have all decreased over the 1966–2003 period. These changes are all consistent with a shift from directional to stabilizing selection on age and size at spawning. Estimated rates of phenotypic change are relatively high, in particular for size at first spawning, adding further support for the growing notion that human interference may lead to rapid life‐history trait evolution.