L. Coccato
European Southern Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. Coccato.
Monthly Notices of the Royal Astronomical Society | 2009
L. Coccato; Ortwin Gerhard; Magda Arnaboldi; Payel Das; N. G. Douglas; K. Kuijken; Michael R. Merrifield; N. R. Napolitano; E. Noordermeer; Aaron J. Romanowsky; M. Capaccioli; A. Cortesi; F. De Lorenzi; Kenneth C. Freeman
We present new planetary nebulae (PNe) positions, radial velocities and magnitudes for six early-type galaxies obtained with the Planetary Nebulae Spectrograph (PNS), along with derived two-dimensional velocity and velocity dispersion fields, and the α parameters (i.e. the number of PNe per unit luminosity). We also present new deep absorption-line long-slit kinematics for three galaxies in the sample, obtained with the FOcal Reducer and low dispersion Spectrograph (FORS2) at the Very Large Telescope (VLT). We extend this study to include additional 10 early-type galaxies with PNe radial velocity measurements available from the literature, including previous PNS studies, in order to obtain a broader description of the outer-halo kinematics in early-type galaxies. These data extend the information derived from stellar absorption-line kinematics to typically several and up to 8 effective radii. The combination of photometry, absorption-line and PNe kinematics shows (i) a good agreement between the PNe number density distribution and the stellar surface brightness in the region where the two data sets overlap; (ii) a good agreement between PNe and absorption-line kinematics; (iii) that the mean rms velocity profiles fall into two groups, with part of the galaxies characterized by slowly decreasing profiles and the remainder having steeply falling profiles; (iv) a larger variety of velocity dispersion radial profiles; (v) that twists and misalignments in the velocity fields are more frequent at large radii, including some fast rotator galaxies; (vi) that outer haloes are characterized by more complex radial profiles of the specific angular momentum-related λ_R parameter than observed within 1 R_e; (vii) that many objects are more rotationally dominated at large radii than in their central parts and (viii) that the halo kinematics are correlated with other galaxy properties, such as total B band and X-ray luminosity, isophotal shape, total stellar mass, V/σ and α parameter, with a clear separation between fast and slow rotators. Based in part on observations made with the William Herschel Telescope operated by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos on the island of La Palma, of the Instituto de Astrofisica de Canarias, and on observations collected at the European Southern Observatory, Chile, Program: 76.B-0788(A). E-mail: [email protected]
Monthly Notices of the Royal Astronomical Society | 2009
N. R. Napolitano; Aaron J. Romanowsky; L. Coccato; M. Capaccioli; N. G. Douglas; E. Noordermeer; Ortwin Gerhard; Magda Arnaboldi; F. De Lorenzi; K. Kuijken; Michael R. Merrifield; Ewan O'Sullivan; A. Cortesi; Payel Das; Kenneth C. Freeman
We present new Planetary Nebula Spectrograph observations of the ordinary elliptical galaxy NGC 4494, resulting in positions and velocities of 255 planetary nebulae out to seven effective radii (25 kpc). We also present new wide-field surface photometry from MMT/Megacam, and long-slit stellar kinematics from VLT/FORS2. The spatial and kinematical distributions of the planetary nebulae agree with the field stars in the region of overlap. The mean rotation is relatively low, with a possible kinematic axis twist outside 1Re. The velocity dispersion profile declines with radius, though not very steeply, down to ∼70 km s − 1 at the last data point. We have constructed spherical dynamical models of the system, including Jeans analyses with multi-component A cold dark matter (CDM) motivated galaxies as well as logarithmic potentials. These models include special attention to orbital anisotropy, which we constrain using fourth-order velocity moments. Given several different sets of modelling methods and assumptions, we find consistent results for the mass profile within the radial range constrained by the data. Some dark matter (DM) is required by the data; our best-fitting solution has a radially anisotropic stellar halo, a plausible stellar mass-to-light ratio and a DM halo with an unexpectedly low central density. We find that this result does not substantially change with a flattened axisymmetric model. Taken together with other results for galaxy halo masses, we find suggestions for a puzzling pattern wherein most intermediate-luminosity galaxies have very low concentration haloes, while some high-mass ellipticals have very high concentrations. We discuss some possible implications of these results for DM and galaxy formation.
Monthly Notices of the Royal Astronomical Society | 2009
F. De Lorenzi; Ortwin Gerhard; L. Coccato; Magda Arnaboldi; M. Capaccioli; N. G. Douglas; Kenneth C. Freeman; Konrad Kuijken; Michael R. Merrifield; N. R. Napolitano; E. Noordermeer; Aaron J. Romanowsky; Victor P. Debattista
Recent results from the Planetary Nebula Spectrograph (PNS) survey have revealed a rapidly falling velocity dispersion profile in the nearby elliptical galaxy NGC 3379, casting doubts on whether this intermediate-luminosity galaxy has the kind of dark matter (DM) halo expected in � cold dark matter (� CDM) cosmology. We present a detailed dynamical study of this galaxy, combining ground based long-slit spectroscopy, integral-field data from the Spectrographic Areal Unit for Research on Optical Nebulae (SAURON) instrument and PNS data reaching to more than seven effective radii. We construct dynamical models with the flexible χ 2 -made-to-measure (χ 2 M2M) particle method implemented in the NMAGIC code. We fit spherical, axisymmetric and some triaxial models to the photometric and combined kinematic data in a sequence of gravitational potentials whose circular velocity curves at large radii vary between a near-Keplerian decline and the nearly flat shapes generated by massive haloes. We find that models with a range of halo masses, anisotropies, shapes and inclinations are good representations of the data. In particular, the data are consistent both with nearisotropic systems dominated by the stellar mass and with models in moderately massive haloes with strongly radially anisotropic outer parts (β 0.8 at 7Re). Formal likelihood limits would exclude (at 1σ ) the model with stars only, as well as halo models with vcirc(7Re) 250 km s −1 . All valid models fitting all the data are dynamically stable over gigayears, including the most anisotropic ones. Overall the kinematic data for NGC 3379 out to 7Re are consistent with a range of mass distributions in this galaxy. NGC 3379 may well have a DM halo as predicted by recent merger ¯
The Astrophysical Journal | 2009
A. Beifiori; Marc Sarzi; E. M. Corsini; E. Dalla Bontà; A. Pizzella; L. Coccato; F. Bertola
A method for the preparation of 1,3-diketones is disclosed wherein the method comprises the steps of:(A) mixing an alkali metal base with a hindered alcohol in an aromatic hydrocarbon solvent;(B) boiling the mixture and azeotropically distilling water formed by the reaction between the base and the alcohol, whereby a solution of a hindered alkali metal alkoxide is formed in situ in the solvent;(C) mixing an ester with the solution of the hindered alkali metal alkoxide in the aromatic hydrocarbon solvent; and then(D) adding a ketone to the mixture.
Monthly Notices of the Royal Astronomical Society | 2008
L. Morelli; E. Pompei; A. Pizzella; J. Méndez-Abreu; E. M. Corsini; L. Coccato; R. P. Saglia; Marc Sarzi; F. Bertola
Photometry and long-slit spectroscopy are presented for 14 S0 and spiral galaxies of the Fornax, Eridanus and Pegasus cluster, and NGC 7582 group. The structural parameters of the galaxies are derived from the R-band images by performing a two-dimensional photometric decomposition of the surface brightness distribution. This is assumed to be the sum of the contribution of a bulge and disc component characterized by elliptical and concentric isophotes with constant (but possibly different) ellipticity and position angles. The rotation curves and velocity dispersion profiles are measured from the spectra obtained along the major axis of galaxies. The radial profiles of the Hβ, Mg and Fe line-strength indices are presented too. Correlations between the central values of Mg2, � Fe� ,H β and σ are found. The age, metallicity and α/Fe enhancement of the stellar population in the centre and at the radius where bulge and disc give the same contribution to the total surface brightness are obtained using stellar population models with variable element abundance ratios. Three classes of bulges are identified. The youngest bulges (∼2 Gyr) with ongoing star formation, intermediate-age bulges (4–8 Gyr) have solar metallicity, and old bulges (∼10 Gyr) have high metallicity. Most of the sample bulges display solar α/Fe enhancement, no gradient in age and a negative gradient of metallicity. The presence of negative gradient in the metallicity radial profile favours a scenario with bulge formation via dissipative collapse. This implies strong insideout formation that should give rise to a negative gradient in the α/Fe enhancement too. But, no gradient is measured in the [α/Fe] radial profiles for all the galaxies, except for NGC 1366. In this galaxy there is a kinematically decoupled component, which is younger than the rest of host bulge. It possibly formed by enriched material probably acquired via interaction or minor merging. The bulge of NGC 1292 is the most reliable pseudo-bulge of our sample. The properties of its stellar population are consistent with a slow build-up within a scenario of secular evolution.
The Astrophysical Journal | 2009
E. Dalla Bontà; Laura Ferrarese; E. M. Corsini; Jordi Miralda-Escudé; L. Coccato; Marc Sarzi; A. Pizzella; A. Beifiori
We present Hubble Space Telescope imaging and spectroscopic observations of three Brightest Cluster Galaxies, Abell 1836-BCG, Abell 2052-BCG, and Abell 3565-BCG, obtained with the Wide Field and Planetary Camera 2, the Advanced Camera for Surveys and the Space Telescope Imaging Spectrograph. The data provide detailed information on the structure and mass profile of the stellar component, the dust optical depth, and the spatial distribution and kinematics of the ionized gas within the innermost region of each galaxy. Dynamical models, which account for the observed stellar mass profile and include the contribution of a central supermassive black hole (SBH), are constructed to reproduce the kinematics derived from the H? and [N II]??6548,6583 emission lines. Secure SBH detection with M ? = 3.61+0.41 ?0.50 ? 109 M ? and M ? = 1.34+0.21 ?0.19 ? 109 M ?, respectively, are obtained for Abell 1836-BCG and Abell 3565-BCG, which show regular rotation curves and strong central velocity gradients. In the case of Abell 2052-BCG, the lack of an orderly rotational motion prevents a secure determination, although an upper limit of M ? 4.60 ? 109 M ? can be placed on the mass of the central SBH. These measurements represent an important step forward in the characterization of the high-mass end of the SBH mass function.
Monthly Notices of the Royal Astronomical Society | 2015
David M. Wilkinson; Claudia Maraston; Daniel Thomas; L. Coccato; Rita Tojeiro; Michele Cappellari; Francesco Belfiore; Matthew A. Bershady; Mike Blanton; Kevin Bundy; Sabrina L. Cales; Brian Cherinka; Niv Drory; Eric Emsellem; Hai Fu; David R. Law; Cheng Li; Roberto Maiolino; Karen L. Masters; Christy A. Tremonti; David A. Wake; Enci Wang; Anne-Marie Weijmans; Ting Xiao; Renbin Yan; Kai Zhang; Dmitry Bizyaev; Jonathan Brinkmann; Karen Kinemuchi; Elena Malanushenko
MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a 6-yr SDSS-IV (Sloan Digital Sky Survey IV) survey that will obtain resolved spectroscopy from 3600 to 10 300 A for a representative sample of over 10 000 nearby galaxies. In this paper, we derive spatially resolved stellar population properties and radial gradients by performing full spectral fitting of observed galaxy spectra from P-MaNGA, a prototype of the MaNGA instrument. These data include spectra for 18 galaxies, covering a large range of morphological type. We derive age, metallicity, dust, and stellar mass maps, and their radial gradients, using high spectral-resolution stellar population models, and assess the impact of varying the stellar library input to the models. We introduce a method to determine dust extinction which is able to give smooth stellar mass maps even in cases of high and spatially non-uniform dust attenuation. With the spectral fitting, we produce detailed maps of stellar population properties which allow us to identify galactic features among this diverse sample such as spiral structure, smooth radial profiles with little azimuthal structure in spheroidal galaxies, and spatially distinct galaxy sub-components. In agreement with the literature, we find the gradients for galaxies identified as early type to be on average flat in age, and negative (−0.15 dex/Re) in metallicity, whereas the gradients for late-type galaxies are on average negative in age (−0.39 dex/Re) and flat in metallicity. We demonstrate how different levels of data quality change the precision with which radial gradients can be measured. We show how this analysis, extended to the large numbers of MaNGA galaxies, will have the potential to shed light on galaxy structure and evolution.
Monthly Notices of the Royal Astronomical Society | 2015
Francesco Belfiore; Roberto Maiolino; Kevin Bundy; Daniel Thomas; Claudia Maraston; David M. Wilkinson; S. F. Sánchez; Matthew A. Bershady; Guillermo A. Blanc; M. S. Bothwell; Sabrina L. Cales; L. Coccato; Niv Drory; Eric Emsellem; Hai Fu; Joseph D. Gelfand; David R. Law; Karen L. Masters; John K. Parejko; Christy A. Tremonti; David A. Wake; Anne-Marie Weijmans; Renbin Yan; Ting Xiao; Keke Zhang; T. Zheng; Dmitry Bizyaev; Karen Kinemuchi; Daniel Oravetz; Audrey Simmons
MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a 6-yr Sloan Digital Sky Survey (SDSS-IV) survey that will obtain spatially resolved spectroscopy from 3600 to 10 300 A for a representative sample of over 10 000 nearby galaxies. In this paper, we present the analysis of nebular emission-line properties using observations of 14 galaxies obtained with P-MaNGA, a prototype of the MaNGA instrument. By using spatially resolved diagnostic diagrams, we find extended star formation in galaxies that are centrally dominated by Seyfert/LINER-like emission, which illustrates that galaxy characterizations based on single fibre spectra are necessarily incomplete. We observe extended low ionization nuclear emission-line regions (LINER)-like emission (up to 1Re) in the central regions of three galaxies. We make use of the Hα equivalent width [EW(Hα)] to argue that the observed emission is consistent with ionization from hot evolved stars. We derive stellar population indices and demonstrate a clear correlation between Dn(4000) and EW(HδA) and the position in the ionization diagnostic diagram: resolved galactic regions which are ionized by a Seyfert/LINER-like radiation field are also devoid of recent star formation and host older and/or more metal-rich stellar populations. We also detect extraplanar LINER-like emission in two highly inclined galaxies, and identify it with diffuse ionized gas. We investigate spatially resolved metallicities and find a positive correlation between metallicity and star formation rate surface density. We further study the relation between N/O versus O/H on resolved scales. We find that, at given N/O, regions within individual galaxies are spread towards lower metallicities, deviating from the sequence defined by galactic central regions as traced by Sloan 3-arcsec fibre spectra. We suggest that the observed dispersion can be a tracer for gas flows in galaxies: infalls of pristine gas and/or the effect of a galactic fountain.
Monthly Notices of the Royal Astronomical Society | 2013
A. Cortesi; Michael R. Merrifield; L. Coccato; Magda Arnaboldi; Ortwin Gerhard; Steven P. Bamford; N. R. Napolitano; Aaron J. Romanowsky; Nigel G. Douglas; Konrad Kuijken; M. Capaccioli; Kenneth C. Freeman; Kanak Saha; Ana L. Chies-Santos
The stellar kinematics of the spheroids and discs of S0 galaxies contain clues to their formation histories. Unfortunately, it is difficult to disentangle the two components and to recover their stellar kinematics in the faint outer parts of the galaxies using conventional absorption line spectroscopy. This paper therefore presents the stellar kinematics of six S0 galaxies derived from observations of planetary nebulae, obtained using the Planetary Nebula Spectrograph. To separate the kinematics of the two components, we use a maximum-likelihood method that combines the discrete kinematic data with a photometric component decomposition. The results of this analysis reveal that: the discs of S0 galaxies are rotationally supported; however, the amount of random motion in these discs is systematically higher than in comparable spiral galaxies; and the S0s lie around one magnitude below the Tully–Fisher relation for spiral galaxies, while their spheroids lie nearly one magnitude above the Faber–Jackson relation for ellipticals. All of these findings are consistent with a scenario in which spirals are converted into S0s through a process of mild harassment or ‘pestering,’ with their discs somewhat heated and their spheroid somewhat enhanced by the conversion process. In such a scenario, one might expect the properties of S0s to depend on environment. We do not see such an effect in this fairly small sample, although any differences would be diluted by the fact that the current location does not necessarily reflect the environment in which the transformation occurred. Similar observations of larger samples probing a broader range of environments, coupled with more detailed modelling of the transformation process to match the wide range of parameters that we have shown can now be measured, should take us from these first steps to the definitive answer as to how S0 galaxies form.
Monthly Notices of the Royal Astronomical Society | 2013
Lucia Morganti; Ortwin Gerhard; L. Coccato; Inma Martinez-Valpuesta; Magda Arnaboldi
NGC 4494 is one of several intermediate-luminosity elliptical galaxies inferred to have an unusually diffuse dark matter halo. We use the χ 2 -made-to-measure particle code NMAGIC to construct axisymmetric models of NGC 4494 from photometric and various kinematic data. The extended kinematics include light spectra in multiple slitlets out to 3.5Re, and hundreds of planetary nebulae velocities out to ≃ 7Re, thus allowing us to probe the dark matter content and orbital structure in the halo. We use Monte Carlo simulations to estimate confidence boundaries for the halo parameters, given our data and modelling set-up. We find that the true potential of