Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. El-Guebaly is active.

Publication


Featured researches published by L. El-Guebaly.


Nuclear Fusion | 2011

Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

J. Menard; Leslie Bromberg; T. Brown; T. Burgess; D. Dix; L. El-Guebaly; T. Gerrity; R.J. Goldston; R.J. Hawryluk; R. Kastner; C. Kessel; S. Malang; Joseph V. Minervini; G.H. Neilson; C. Neumeyer; S. Prager; M.E. Sawan; J. Sheffield; A. Sternlieb; L. Waganer; D.G. Whyte; M. C. Zarnstorff

A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.


Fusion Science and Technology | 2015

The Fusion Nuclear Science Facility, the Critical Step in the Pathway to Fusion Energy

C. Kessel; James P. Blanchard; Andrew Davis; L. El-Guebaly; Nasr M. Ghoniem; Paul W. Humrickhouse; S. Malang; Brad J. Merrill; Neil B. Morley; G. H. Neilson; M. E. Rensink; Thomas D. Rognlien; A. Rowcliffe; Sergey Smolentsev; Lance Lewis Snead; M. S. Tillack; P. Titus; Lester M. Waganer; Alice Ying; K. Young; Yuhu Zhai

The proposed Fusion Nuclear Science Facility (FNSF) represents the first facility to enter the complex fusion nuclear regime, and its technical mission and attributes are being developed. The FNSF represents one part of the fusion energy development pathway to the first commercial power plant with other major components being the pre-FNSF research and development, research in parallel with the FNSF, pre-DEMO research and development, and the demonstration power plant (DEMO). The Fusion Energy Systems Studies group is developing the technical basis for the FNSF in order to provide a better understanding of the demands on the fusion plasma and fusion nuclear science programs.


Nuclear Fusion | 2016

Fusion nuclear science facilities and pilot plants based on the spherical tokamak

J. Menard; T. Brown; L. El-Guebaly; Mark D. Boyer; J.M. Canik; B. Colling; R. Raman; Z.R. Wang; Yuhu Zhai; P. Buxton; Brent Covele; C. D’Angelo; A. Davis; S.P. Gerhardt; M. Gryaznevich; M. Harb; T.C. Hender; S.M. Kaye; D. Kingham; M. Kotschenreuther; S. M. Mahajan; R. Maingi; E. Marriott; E.T. Meier; L. Mynsberge; C. Neumeyer; M. Ono; J.-K. Park; S.A. Sabbagh; V. Soukhanovskii

A fusion nuclear science facility (FNSF) could play an important role in the development of fusion energy by providing the nuclear environment needed to develop fusion materials and components. The spherical torus/tokamak (ST) is a leading candidate for an FNSF due to its potentially high neutron wall loading and modular configuration. A key consideration for the choice of FNSF configuration is the range of achievable missions as a function of device size. Possible missions include: providing high neutron wall loading and fluence, demonstrating tritium self-sufficiency, and demonstrating electrical self-sufficiency. All of these missions must also be compatible with a viable divertor, first-wall, and blanket solution. ST-FNSF configurations have been developed simultaneously incorporating for the first time: (1) a blanket system capable of tritium breeding ratio TBR ≈ 1, (2) a poloidal field coil set supporting high elongation and triangularity for a range of internal inductance and normalized beta values consistent with NSTX/NSTX-U previous/planned operation, (3) a long-legged divertor analogous to the MAST-U divertor which substantially reduces projected peak divertor heat-flux and has all outboard poloidal field coils outside the vacuum chamber and superconducting to reduce power consumption, and (4) a vertical maintenance scheme in which blanket structures and the centerstack can be removed independently. Progress in these ST-FNSF missions versus configuration studies including dependence on plasma major radius R0 for a range 1 m–2.2 m are described. In particular, it is found the threshold major radius for TBR = 1 is ⩾ R 1.7 0 m, and a smaller R0 = 1 m ST device has TBR ≈ 0.9 which is below unity but substantially reduces T consumption relative to not breeding. Calculations of neutral beam heating and current drive for non-inductive ramp-up and sustainment are described. An A = 2, R0 = 3 m device incorporating high-temperature superconductor toroidal field coil magnets capable of high neutron fluence and both tritium and electrical self-sufficiency is also presented following systematic aspect ratio studies. J.E. Menard et al Fusion nuclear science facilities and pilot plants based on the spherical tokamak Printed in the UK 106023 NUFUAU


Journal of Fusion Energy | 1998

Could Advanced Fusion Fuels Be Used with Today's Technology?

John F. Santarius; G.L. Kulcinski; L. El-Guebaly; H.Y. Khater

Could todays technology suffice for engineering advanced-fuel, magnetic-fusion power plants, thus making fusion development primarily a physics problem? Such a path would almost certainly cost far less than the present D-T development program, which is driven by daunting engineering challenges as well as physics questions. Advanced fusion fuels, in contrast to D-T fuel, produce a smaller fraction of the fusion power as neutrons but have lower fusion reactivity, leading to a trade-off between engineering and physics. This paper examines the critical fusion engineering issues and related technologies with an eye to their application in tokamak and alternate-concept D-3He power plants. These issues include plasma power balance, magnets, surface heat flux, input power, fuel source, radiation damage, radioactive waste disposal, and nuclear proliferation.


Nuclear Fusion | 2017

Materials-related issues in the safety and licensing of nuclear fusion facilities

N. Taylor; Brad J. Merrill; Lee C. Cadwallader; L. Di Pace; L. El-Guebaly; P. Humrickhouse; D. Panayotov; T. Pinna; M.T. Porfiri; S. Reyes; Masashi Shimada; S. Willms

Fusion power holds the promise of electricity production with a high degree of safety and low environmental impact. Favourable characteristics of fusion as an energy source provide the potential for this very good safety and environmental performance. But to fully realize the potential, attention must be paid in the design of a demonstration fusion power plant (DEMO) or a commercial power plant to minimize the radiological hazards. These hazards arise principally from the inventory of tritium and from materials that become activated by neutrons from the plasma. The confinement of these radioactive substances, and prevention of radiation exposure, are the primary goals of the safety approach for fusion, in order to minimize the potential for harm to personnel, the public, and the environment. The safety functions that are implemented in the design to achieve these goals are dependent on the performance of a range of materials. Degradation of the properties of materials can lead to challenges to key safety functions such as confinement. In this paper the principal types of material that have some role in safety are recalled. These either represent a potential source of hazard or contribute to the amelioration of hazards; in each case the related issues are reviewed. The resolution of these issues lead, in some instances, to requirements on materials specifications or to limits on their performance.


Fusion Science and Technology | 2013

Comparison of Options for a Pilot Plant Fusion Nuclear Mission

T. Brown; R J Goldston; L. El-Guebaly; C. Kessel; G. H. Neilson; S. Malang; J. Menard; S Prager; Lester M. Waganer; P. Titus; M. C. Zarnstorff

Abstract A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant, following a path similar to the approach adopted for the commercialization of fission. The pilot plant mission encompassed component test and fusion nuclear science missions plus the requirement to produce net electricity with high availability in a device designed to be prototypical of the commercial device. Three magnetic configuration options were developed around this mission: the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS). With the completion of the study and separate documentation of each design option a question can now be posed; how do the different designs compare with each other as candidates for meeting the pilot plant mission? In a pro/con format this paper will examine the key arguments for and against the AT, ST and CS magnetic configurations. Key topics addressed include: plasma parameters, device configurations, size and weight comparisons, diagnostic issues, maintenance schemes, availability influences and possible test cell arrangement schemes.


Fusion Technology | 1994

Improvement in fusion reactor performance due to ion channeling

G. A. Emmert; L. El-Guebaly; G.L. Kulcinski; John F. Santarius; I.N. Sviatoslavsky; D. M. Meade

Ion channeling is a recent idea for improving the performance of fusion reactors by increasing the fraction of the fusion power deposited in the ions. In this paper the authors assess the effect of ion channeling on D-T and D-{sup 3}He reactors. The figures of merit used are the fusion power density and the cost of electricity. It is seen that significant ion channeling can lead to about a 50-65% increase in the fusion power density. For the Apollo D-{sup 3}He reactor concept the reduction in the cost of electricity can be as large as 30%.


Fusion Technology | 1992

Safety and Environmental Characteristics of Recent D- 3 He and DT Tokamak Power Reactors

Gerald L. Kulcinski; James P. Blanchard; G. A. Emmert; L. El-Guebaly; H.Y. Khater; Charles W. Maynard; E.A. Mogahed; J. E Santarius; M.E. Sawan; I.N. Sviatoslavsky; L.J. Wittenberg

A comparison of the key features of the D-He Apollo and the DT ARIES fusion power reactor designs is made. The reduction in neutron production from the D-He reaction has a major effect on the performance of tokamak reactors. One of the biggest impacts is the low radiation damage rate in D-He systems which allows a permanent first wall to be utilized. The reduction in radioactivity in D-3He reactors has a particularly advantageous effect on the storage of wastes as well as on the safety to the public in the event of the worst conceivable accident. The more difficult D-He physics requirements are offset by the technological advantages of using this fuel in place of the DT cycle.


Fusion Science and Technology | 2015

Blanket/Materials Testing Strategy for FNSF and Its Breeding Potential

L. El-Guebaly; S. Malang; A. Rowcliffe; Lester M. Waganer

In the U.S., the Fusion Nuclear Science Facility (FNSF) is viewed as an essential element of the fusion developmental roadmap. The tritium self-sufficiency, blanket testing, and materials testing are of particular interest since they define a critical element of the FNSF mission. There is a definitive need to breed the majority of, if not all, the tritium required for operation. A staged blanket testing strategy has been developed to test and enhance the blanket performance during each phase of operation. A materials testing module is critically important to include in FNSF to test large specimens of future generations of materials (for blanket, divertor, magnets, etc.) in relevant fusion environment. In this strategy, the test modules play a pivotal role and serve as “forerunners” for more advanced versions of blanket and materials that will validate their characteristics and features to assure the successful operation of DEMO and advanced power plants.


Fusion Science and Technology | 2011

Activation and Radiation Damage Characteristics of W-Based Divertor of ARIES Power Plants

A. Robinson; L. El-Guebaly; D. Henderson

Abstract Currently, there is an ongoing international effort to develop and characterize W alloys that are suitable for fusion applications. In this report, five key W alloys were examined for the advanced divertor design of ARIES-ACT - the latest ARIES tokamak design. The most promising alloys appear to be W-1.1TiC and W-La2O3. At the end of the divertor lifetime (~4 years), the maintenance dose of these alloys very closely matches those of W with nominal impurities. Unfortunately, even with pure W, the divertor is not clearable, which indicates that it must be recycled or disposed of in a geological repository. The radiation damage and transmutation are expected to degrade the physical properties of any material. The radiation damage level in W is low compared to ferritic steel - a remarkable feature for tungsten. For ARIES-ACT operating conditions, transmutation of W does not appear to present a significant issue.

Collaboration


Dive into the L. El-Guebaly's collaboration.

Top Co-Authors

Avatar

M.E. Sawan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Paul P. H. Wilson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

H.Y. Khater

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

I.N. Sviatoslavsky

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

J. Menard

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Brown

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Kessel

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Henderson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lester M. Waganer

Princeton Plasma Physics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge