Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Gregorini is active.

Publication


Featured researches published by L. Gregorini.


Astronomy and Astrophysics | 2009

The VIMOS VLT Deep Survey - Evolution of the major merger rate since z ~ 1 from spectroscopically confirmed galaxy pairs

L. de Ravel; O. Le Fèvre; L. Tresse; D. Bottini; B. Garilli; V. Le Brun; D. Maccagni; R. Scaramella; M. Scodeggio; G. Vettolani; A. Zanichelli; C. Adami; Stephane Arnouts; S. Bardelli; M. Bolzonella; A. Cappi; S. Charlot; P. Ciliegi; T. Contini; Sylvie Foucaud; P. Franzetti; I. Gavignaud; L. Guzzo; O. Ilbert; A. Iovino; F. Lamareille; H. J. McCracken; B. Marano; Christian Marinoni; A. Mazure

Context: The rate at which galaxies grow via successive mergers is a key element in understanding the main phases of galaxy evolution. Aims: We measure the evolution of the fraction of galaxies in pairs and the merging rate since redshift z 1 assuming a (H0 = 70 km s-1 Mpc-1, ΩM = 0.3 and ΩΛ = 0.7) cosmology. Methods: From the VIMOS VLT Deep Survey we use a sample of 6464 galaxies with I_AB ≤ 24 to identify 314 pairs of galaxies, each member with a secure spectroscopic redshift, which are close in both projected separation and in velocity. Results: We estimate that at z 0.9, 10.9 ± 3.2% of galaxies with MB(z) ≤ -18-Qz (Q = 1.11) are in pairs with separations Δ rp ≤ 20 h-1 kpc, Δ v≤ 500 km s-1, and with Δ MB ≤ 1.5, significantly larger than 3.8 ± 1.7% at z 0.5; thus, the pair fraction evolves as (1 + z)m with m = 4.73 ± 2.01. For bright galaxies with MB(z = 0) ≤ -18.77, the pair fraction is higher and its evolution with redshift is flatter with m = 1.50 ± 0.76, a property also observed for galaxies with increasing stellar masses. Early-type pairs (dry mergers) increase their relative fraction from 3% at z 0.9 to 12% at z 0.5. The star formation rate traced by the rest-frame [OII] EW increases by 26 ± 4% for pairs with the smallest separation rp ≤ 20 h-1 kpc. Following published prescriptions to derive merger timescales, we find that the merger rate of MB(z) ≤ -18-Qz galaxies evolves as N_mg = (4.96 ± 2.07)×10-4×(1 + z)2.20 ± 0.77 mergers Mpc-3 Gyr-1. Conclusions: The merger rate of galaxies with MB(z) ≤ -18-Qz has significantly evolved since z 1 and is strongly dependent on the luminosity or stellar mass of galaxies. The major merger rate increases more rapidly with redshift for galaxies with fainter luminosities or stellar mass, while the evolution of the merger rate for bright or massive galaxies is slower, indicating that the slow evolution reported for the brightest galaxies is not universal. The merger rate is also strongly dependent on the spectral type of galaxies involved. Late-type mergers were more frequent in the past, while early-type mergers are more frequent today, contributing to the rise in the local density of early-type galaxies. About 20% of the stellar mass in present day galaxies with log(M/M{ȯ}) ≥ 9.5 has been accreted through major merging events since z = 1. This indicates that major mergers have contributed significantly to the growth in stellar mass density of bright galaxies over the last half of the life of the Universe. based on observations obtained with the European Southern Observatory Telescopes at the Paranal Observatory, under programs 072.A-0586 and 073.A-0647.


Astronomy and Astrophysics | 2006

The VIMOS-VLT deep survey - evolution of the luminosity functions by galaxy type up to z = 1.5 from first epoch data

E. Zucca; O. Ilbert; S. Bardelli; L. Tresse; G. Zamorani; S. Arnouts; L. Pozzetti; M. Bolzonella; H. J. McCracken; D. Bottini; B. Garilli; V. Le Brun; O. Le Fèvre; D. Maccagni; J. P. Picat; R. Scaramella; M. Scodeggio; G. Vettolani; A. Zanichelli; C. Adami; M. Arnaboldi; A. Cappi; S. Charlot; P. Ciliegi; T. Contini; Sylvie Foucaud; P. Franzetti; I. Gavignaud; L. Guzzo; A. Iovino

From the first epoch observations of the VVDS up to z=1.5 we have derived luminosity functions (LF) of different spectral type galaxies. The VVDS data, covering ~70% of the life of the Universe, allow for the first time to study from the same sample and with good statistical accuracy the evolution of the LFs by galaxy type in several rest frame bands from a purely magnitude selected sample. The magnitude limit of the VVDS allows the determination of the faint end slope of the LF with unprecedented accuracy. Galaxies have been classified in four spectral classes, using their colours and redshift, and LFs have been derived in the U, B, V, R and I rest frame bands from z=0.05 to z=1.5. We find a significant steepening of the LF going from early to late types. The M* parameter is significantly fainter for late type galaxies and this difference increases in the redder bands. Within each of the galaxy spectral types we find a brightening of M* with increasing redshift, ranging from =< 0.5 mag for early type galaxies to ~1 mag for the latest type galaxies, while the slope of the LF of each spectral type is consistent with being constant with redshift. The LF of early type galaxies is consistent with passive evolution up to z~1.1, while the number of bright early type galaxies has decreased by ~40% from z~0.3 to z~1.1. We also find a strong evolution in the normalization of the LF of latest type galaxies, with an increase of more than a factor 2 from z~0.3 to z~1.3: the density of bright late type galaxies in the same redshift range increases of a factor ~6.6. These results indicate a strong type-dependent evolution and identifies the latest spectral types as responsible for most of the evolution of the UV-optical luminosity function out to z=1.5.


Astronomy and Astrophysics | 2008

The Vimos VLT deep survey - Global properties of 20 000 galaxies in the IAB < 22.5 WIDE survey

B. Garilli; O. Le Fèvre; L. Guzzo; D. Maccagni; V. Le Brun; S. de la Torre; B. Meneux; L. Tresse; P. Franzetti; G. Zamorani; A. Zanichelli; L. Gregorini; D. Vergani; D. Bottini; R. Scaramella; M. Scodeggio; G. Vettolani; C. Adami; Stephane Arnouts; S. Bardelli; M. Bolzonella; A. Cappi; S. Charlot; P. Ciliegi; T. Contini; Sylvie Foucaud; I. Gavignaud; O. Ilbert; A. Iovino; F. Lamareille

The VVDS-Wide survey has been designed to trace the large-scale distribution of galaxies at z ~ 1 on comoving scales reaching ~100~h-1 Mpc, while providing a good control of cosmic variance over areas as large as a few square degrees. This is achieved by measuring redshifts with VIMOS at the ESO VLT to a limiting magnitude IAB = 22.5, targeting four independent fields with sizes of up to 4 deg2 each. We discuss the survey strategy which covers 8.6 deg2 and present the general properties of the current redshift sample. This includes 32 734 spectra in the four regions, covering a total area of 6.1 deg2 with a sampling rate of 22 to 24%. This paper accompanies the public release of the first 18 143 redshifts of the VVDS-Wide survey from the 4 deg2 contiguous area of the F22 field at RA = 22^h. We have devised and tested an objective method to assess the quality of each spectrum, providing a compact figure-of-merit. This is particularly effective in the case of long-lasting spectroscopic surveys with varying observing conditions. Our figure of merit is a measure of the robustness of the redshift measurement and, most importantly, can be used to select galaxies with uniform high-quality spectra to carry out reliable measurements of spectral features. We also use the data available over the four independent regions to directly measure the variance in galaxy counts. We compare it with general predictions from the observed galaxy two-point correlation function at different redshifts and with that measured in mock galaxy surveys built from the Millennium simulation. The purely magnitude-limited VVDS Wide sample includes 19 977 galaxies, 304 type I AGNs, and 9913 stars. The redshift success rate is above 90% independent of magnitude. A cone diagram of the galaxy spatial distribution provides us with the current largest overview of large-scale structure up to z ~ 1, showing a rich texture of over- and under-dense regions. We give the mean N(z) distribution averaged over 6.1 deg2 for a sample limited in magnitude to IAB = 22.5. Comparing galaxy densities from the four fields shows that in a redshift bin Δz = 0.1 at z ~ 1 one still has factor-of-two variations over areas as large as ~ 0.25 deg2. This level of cosmic variance agrees with that obtained by integrating the galaxy two-point correlation function estimated from the F22 field alone. It is also in fairly good statistical agreement with that predicted by the Millennium simulations. The VVDS WIDE survey currently provides the largest area coverage among redshift surveys reaching z ~ 1. The variance estimated over the survey fields shows explicitly how clustering results from deep surveys of even 1 deg2 size should be interpreted with caution. The survey data represent a rich data base to select complete sub-samples of high-quality spectra and to study galaxy ensemble properties and galaxy clustering over unprecedented scales at these redshifts. The redshift catalog of the 4 deg2 F22 field is publicly available at http://cencosw.oamp.fr.


Astronomy and Astrophysics | 2003

The VLA-VIRMOS Deep Field I. Radio observations probing the microJy source population

M. Bondi. P. Ciliegi; G. Zamorani; L. Gregorini; G. Vettolani; P. Parma; H. R. de Ruiter; O. Le Fèvre; M. Arnaboldi; L. Guzzo; D. Maccagni; R. Scaramella; C. Adami; S. Bardelli; M. Bolzonella; D. Bottini; A. Cappi; Sylvie Foucaud; P. Franzetti; B. Garilli; S. Gwyn O. Ilbert; A. Iovino; V. Le Brun; B. Marano; C. Marinoni; H. J. McCracken; B. Meneux; A. Pollo; L. Pozzetti; M. Radovich; V. Ripepi

We have conducted a deep survey (r.m.s noise 17 microJy) with the Very Large Array (VLA) at 1.4 GHz, with a resolution of 6 arcsec, of a 1 square degree region included in the VIRMOS VLT Deep Survey. In the same field we already have multiband photometry down to I(AB)=25, and spectroscopic observations will be obtained during the VIRMOS VLT survey. The homogeneous sensitivity over the whole field has allowed to derive a complete sample of 1054 radio sources (5 sigma limit). We give a detailed description of the data reduction and of the analysis of the radio observations, with particular care to the effects of clean bias and bandwidth smearing, and of the methods used to obtain the catalogue of radio sources. To estimate the effect of the resolution bias on our observations we have modelled the effective angular-size distribution of the sources in our sample and we have used this distribution to simulate a sample of radio sources. Finally we present the radio count distribution down to 0.08 mJy derived from the catalogue. Our counts are in good agreement with the best fit derived from earlier surveys, and are about 50 % higher than the counts in the HDF. The radio count distribution clearly shows, with extremely good statistics, the change in the slope for the sub-mJy radio sources.


Astronomy and Astrophysics | 2001

Multi{frequency VLA observations of a new sample of CSS/GPS radio sources

C Fanti; F. Pozzi; D. Dallacasa; R. Fanti; L. Gregorini; Carlo Stanghellini; M. Vigotti

In this paper we present a new sample of 87 Compact Steep Spectrum radio sources (CSS) with flux density0.8 Jy at 0.4 GHz. This sample has been selected from the B3-VLA sample with the aid of new VLA observations at 4.9 and 8.5 GHz which allowed to clean an earlier selection based on VLA 1.5 GHz data. Redshifts, either spectroscopic or photometric, are known for 62% of the sources. About 75% of the sources are resolved or slightly resolved in the new observations. The range of measured linear sizes is from 20 h 1 kpc (selection upper limit) down to0.5 h 1 kpc, which corresponds to our resolution limit. The Largest Linear Size (LLS) distribution is well represented by the power law dN=d(LLS) / LLS 0:6 , consistent with earlier results. The majority of the radio sources smaller than 0.5 h 1 kpc shows a marked spectral flattening at low frequencies. The four frequency spectra computed in the range 0.4{8.5 GHz display a signicant steepening at high frequencies in the largest majority of cases. A considerable fraction of source components are polarized, with median values of their fractional polarization6% and4% at 8.5 and 4.9 GHz respectively.


Astronomy and Astrophysics | 2005

The VIRMOS deep imaging survey - IV. Near-infrared observations

A. Iovino; H. J. McCracken; B. Garilli; Sylvie Foucaud; O. Le Fèvre; D. Maccagni; P. Saracco; S. Bardelli; G. Busarello; M. Scodeggio; A. Zanichelli; L. Paioro; D. Bottini; V. Le Brun; J. P. Picat; R. Scaramella; L. Tresse; G. Vettolani; C. Adami; M. Arnaboldi; Stephane Arnouts; M. Bolzonella; A. Cappi; S. Charlot; P. Ciliegi; T. Contini; P. Franzetti; I. Gavignaud; L. Guzzo; O. Ilbert

In this paper we present a new deep, wide-field near-infrared imaging survey. Our J- and K-band observations in four separate fields complement optical BVRI, ultraviolet and spectroscopic observations undertaken as part of the VIMOS-VLT deep survey (VVDS). In total, our survey spans ~400arcmis^2. Our catalogues are reliable in all fields to at least Kvega~20.75 and Jvega~21.50 (defined as the magnitude where object contamination is less than 10% and completeness greater than 90%). Taken together these four fields represents a unique combination of depth, wavelength coverage and area. We describe the complete data reduction process and outline a comprehensive series of tests carried out to characterise the reliability of the final catalogues. We compare the statistical properties of our catalogues with literature compilations. We find that our J- and K-selected galaxy counts are in good agreement with previously published works, as are our (J-K) versus K colour-magnitude diagrams. Stellar number counts extracted from our fields are consistent with a synthetic model of our galaxy. Using the location of the stellar locus in colour-magnitude space and the measured field-to-field variation in galaxy number counts we demonstrate that the absolute accuracy of our photometric calibration is at the 5% level or better. Finally, an investigation of the angular clustering of K- selected extended sources in our survey displays the expected scaling behaviour with limiting magnitude, with amplitudes in each magnitude bin in broad agreement with literature values.


Astronomy and Astrophysics | 2008

The VIMOS VLT Deep Survey. Tracing the galaxy stellar mass assembly history over the last 8 Gyr

D. Vergani; M. Scodeggio; L. Pozzetti; A. Iovino; P. Franzetti; B. Garilli; G. Zamorani; D. Maccagni; F. Lamareille; O. Le Fèvre; S. Charlot; T. Contini; L. Guzzo; D. Bottini; V. Le Brun; J. P. Picat; R. Scaramella; L. Tresse; G. Vettolani; A. Zanichelli; C. Adami; S. Arnouts; S. Bardelli; M. Bolzonella; A. Cappi; P. Ciliegi; Sylvie Foucaud; I. Gavignaud; O. Ilbert; H. J. McCracken

Aims. Our aim is to investigate the history of mass assembly for galaxies of different stellar masses and types. Methods: We selected a mass-limited sample of 4048 objects from the VIMOS VLT Deep Survey (VVDS) in the redshift interval 0.5 ≤ z ≤ 1.3. We then used an empirical criterion, based on the amplitude of the 4000 ABalmer break (D_n4000), to separate the galaxy population into spectroscopically early- and late-type systems. The equivalent width of the [OII]3727 line is used as proxy for the star formation activity. We also derived a type-dependent stellar mass function in three redshift bins. Results: We discuss to what extent stellar mass drives galaxy evolution, showing for the first time the interplay between stellar ages and stellar masses over the past 8 Gyr. Low-mass galaxies have small D_n4000 and at increasing stellar mass, the galaxy distribution moves to higher D_n4000 values as observed in the local Universe. As cosmic time goes by, we witness an increasing abundance of massive spectroscopically early-type systems at the expense of the late-type systems. This spectral transformation of late-type systems into old massive galaxies at lower redshift is a process started at early epochs (z > 1.3) and continuing efficiently down to the local Universe. This is also confirmed by the evolution of our type-dependent stellar mass function. The underlying stellar ages of late-type galaxies apparently do not show evolution, most likely as a result of a continuous and efficient formation of new stars. All star formation activity indicators consistently point towards a star formation history peaked in the past for massive galaxies, with little or no residual star formation taking place in the most recent epochs. In contrast, most of the low-mass systems show just the opposite characteristics, with significant star formation present at all epochs. The activity and efficiency of forming stars are mechanisms that depend on galaxy stellar mass, and the stellar mass assembly becomes progressively less efficient in massive systems as time elapses. The concepts of star formation downsizing and mass assembly downsizing describe a single scenario that has a top-down evolutionary pattern in how the star formation is quenched, as well as how the stellar mass is grown. The role of (dry) merging events seems to be only marginal at z < 1.3, as our estimated efficiency in stellar mass assembly can possibly account for the progressive accumulation of observed passively evolving galaxies. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, program 070.A-9007(A), and on data obtained at the Canada-France-Hawaii Telescope, operated by the CNRS in France, CNRC in Canada and the University of Hawaii.


Astronomy and Astrophysics | 2001

The ATESP radio survey - III. Source counts

I. Prandoni; L. Gregorini; P. Parma; H. R. de Ruiter; G. Vettolani; Mark Hendrik Wieringa; R. D. Ekers

This paper is part of a series reporting the results of the ATESP radio survey obtained at 1.4 GHz with the Australia Telescope Compact Array. The survey consists of 16 radio mosaics with ∼


Nature | 2005

A large population of galaxies 9 to 12 billion years back in the history of the Universe

O. Le Fèvre; S. Paltani; S. Arnouts; S. Charlot; Sylvie Foucaud; O. Ilbert; H. J. McCracken; G. Zamorani; D. Bottini; B. Garilli; V. Le Brun; D. Maccagni; J. P. Picat; R. Scaramella; M. Scodeggio; L. Tresse; G. Vettolani; A. Zanichelli; C. Adami; S. Bardelli; M. Bolzonella; A. Cappi; P. Ciliegi; T. Contini; P. Franzetti; I. Gavignaud; L. Guzzo; A. Iovino; B. Marano; Christian Marinoni

8\arcsec \times 14\arcsec


Astronomy and Astrophysics | 2005

The VVDS-VLA Deep Field II. Optical and near infrared identifications of VLA S(1.4GHz)>80 microJy sources in the VIMOS VLT Deep Survey VVDS-02h field

P. Ciliegi; G. Zamorani; M. Bondi; L. Pozzetti; M. Bolzonella; L. Gregorini; B. Garilli; A. Iovino; H. J. McCracken; Y. Mellier; M. Radovich; H. R. de Ruiter; P. Parma; D. Bottini; V. Le Brun; O. Le Fèvre; D. Maccagni; J. P. Picat; R. Scaramella; M. Scodeggio; L. Tresse; G. Vettolani; A. Zanichelli; C. Adami; M. Arnaboldi; Stephane Arnouts; S. Bardelli; A. Cappi; S. Charlot; T. Contini

resolution and uniform sensitivity (

Collaboration


Dive into the L. Gregorini's collaboration.

Researchain Logo
Decentralizing Knowledge