Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Jason Krutz is active.

Publication


Featured researches published by L. Jason Krutz.


Weed Science | 2007

Rapid Assay for Detecting Enhanced Atrazine Degradation in Soil

Dale L. Shaner; W. Brien Henry; L. Jason Krutz; Brad Hanson

Abstract Atrazine is widely used to control broadleaf weeds and grasses in corn, sorghum, and sugarcane. Field persistence data published before 1995 showed that the average half-life of atrazine in soil was 66 d, and farmers expect to achieve weed control with a single application for the full season. However, reports of enhanced atrazine degradation in soil from fields that have a history of atrazine applications are increasing. A rapid laboratory assay was developed to screen soils for enhanced atrazine degradation. Soil (50 g) was placed in a 250 ml glass jar and treated with 7.5 ml of water containing atrazine (5 µg ai ml−1) and capped with a Teflon-lined lid. The assay was conducted at room temperature (25 C). Soil subsamples (1.5 to 3 g) were removed at 0, 1, 2, 4, 8, and 16 d after treatment and extracted with an equal weight of water (wt/vol). The atrazine in the water extract was assayed with high-pressure liquid chromatography (HPLC). The half-life of atrazine in soils with a history of use was ≤ 1.5 d, whereas the half-life in soils with no history of atrazine use was > 8 d. The advantages of this assay are (1) the ease of set up; (2) the rapidity of extraction, and (3) the simplicity of the quantification of the atrazine. Nomenclature: Atrazine; corn, Zea mays L; sorghum, Sorghum bicolor (L.) Moench; sugarcane, Saccharum officinarum L.


Weed Science | 2009

Enhanced Atrazine Degradation: Evidence for Reduced Residual Weed Control and a Method for Identifying Adapted Soils and Predicting Herbicide Persistence

L. Jason Krutz; Ian C. Burke; Krishna N. Reddy; Robert M. Zablotowicz; Andrew J. Price

Abstract Soilborne bacteria with novel metabolic abilities have been linked with enhanced atrazine degradation and complaints of reduced residual weed control in soils with an s-triazine use history. However, no field study has verified that enhanced degradation reduces atrazines residual weed control. The objectives of this study were to (1) compare atrazine persistence and prickly sida density in s-triazine-adapted and nonadapted field sites at two planting dates; (2) utilize original and published data to construct a diagnostic test for identifying s-triazine-adapted soils; and (3) develop and validate an s-triazine persistence model based on data generated from the diagnostic test, i.e., mineralization of ring-labeled 14C-s-triazine. Atrazine half-life values in s-triazine-adapted soil were at least 1.4-fold lower than nonadapted soil and 5-fold lower than historic estimates (60 d). At both planting dates atrazine reduced prickly sida density in the nonadapted soils (P ≤ 0.0091). Conversely, in the s-triazine-adapted soil, prickly sida density was not different between no atrazine PRE and atrazine PRE at the March 15 planting date (P  =  0.1397). A lack of significance in this contrast signifies that enhanced degradation can reduce atrazines residual control of sensitive weed species. Analyses of published data indicate that cumulative mineralization in excess of 50% of C0 after 30 d of incubation is diagnostic for enhanced s-triazine degradation. An s-triazine persistence model was developed and validated; model predictions for atrazine persistence under field conditions were within the 95% confidence intervals of observed values. Results indicate that enhanced atrazine degradation can decrease the herbicides persistence and residual activity; however, coupling the diagnostic test with the persistence model could enable weed scientists to identify s-triazine-adapted soils, predict herbicide persistence under field conditions, and implement alternative weed control strategies in affected areas if warranted. Nomenclature: Atrazine; prickly sida, Sida spinosa L.


Pest Management Science | 2010

Biological responses to glyphosate drift from aerial application in non-glyphosate- resistant corn

Krishna N. Reddy; Wei Ding; Robert M. Zablotowicz; Steven J. Thomson; Yanbo Huang; L. Jason Krutz

BACKGROUND Glyphosate drift from aerial application onto susceptible crops is inevitable, yet the biological responses to glyphosate drift in crops are not well characterized. The objectives of this research were to determine the effects of glyphosate drift from a single aerial application (18.3 m swath, 866 g AE ha(-1)) on corn injury, chlorophyll content, shikimate level, plant height and shoot dry weight in non-glyphosate-resistant (non-GR) corn. RESULTS One week after application (WAA), corn was killed at 3 m from the edge of the spray swath, with injury decreasing to 18% at 35.4 m downwind. Chlorophyll content decreased from 78% at 6 m to 22% at 15.8 m, and it was unaffected beyond 25.6 m at 1 WAA. Shikimate accumulation in corn decreased from 349% at 0 m to 93% at 15.8 m, and shikimate levels were unaffected beyond 25.6 m downwind. Plant height and shoot dry weight decreased gradually with increasing distance. At a distance of 35.4 m, corn height was reduced by 14% and shoot dry weight by 10% at 3 WAA. CONCLUSIONS Corn injury and other biological responses point to the same conclusion, that is, injury from glyphosate aerial drift is highest at the edge of the spray swath and decreases gradually with distance. The LD(50) (the lethal distance that drift must travel to cause a 50% reduction in biological response) ranged from 12 to 26 m among the biological parameters when wind speed was 11.2 km h(-1) and using a complement of CP-09 spray nozzles on spray aircraft.


Weed Science | 2006

Cotton and corn rotation under reduced tillage management: impacts on soil properties, weed control, yield, and net return

Krishna N. Reddy; Martin A. Locke; Clifford H. Koger; Robert M. Zablotowicz; L. Jason Krutz

Abstract A 6-yr rotation study was conducted from 2000 to 2005 at Stoneville, MS to examine the effects of rotating glyphosate-resistant (GR) and non-GR (conventional) cultivars of cotton with corn under reduced tillage conditions on soil properties, weed control, crop yield, and net return. There were four rotation systems (continuous cotton, continuous corn, cotton–corn, and corn–cotton) for each non-GR and GR cultivar arranged in a randomized complete block design with four replications. Field preparation consisted of disking, subsoiling, disking, and bedding in the fall of 1999. After the fall of 2000, the experimental area received no tillage operations except rebedding after harvest each year to maintain reduced tillage conditions. A glyphosate-based program in GR cultivars and a nonglyphosate-based program in non-GR cultivars were used for weed management. Soil organic carbon in the top 5-cm depth progressively increased from the first year to the sixth year, regardless of rotation. In 2005, organic carbon was higher in corn grown continuously and in rotation compared to continuous cotton, partly due to higher plant residues from corn compared to cotton. Control of most grass and broadleaf weeds was sufficient to support cotton and corn production, regardless of rotation and herbicide program. Control of yellow nutsedge was reduced in continuous non-GR cotton; this apparent weed species shift toward yellow nutsedge was mitigated by breaking the cotton monocrop with corn. Plant populations of both GR and non-GR cotton rotated with corn were similar to that of continuous cotton suggesting cotton stand establishment was not affected by corn residues from the previous year. Cotton yield increased every year following rotation with corn by 10–32% in the non-GR cultivar, and by 14–19% in the GR cultivar compared to continuous cotton. Similarly, corn yield increased by 5–13% in non-GR cultivar and by 1–11% in the GR cultivar when rotated with cotton. As a result, net returns were higher from rotation management as compared with monoculture in both crops. This study demonstrated that alternating between cotton and corn is agronomically feasible and a sustainable option for farmers in the lower Mississippi River alluvial flood plain region who are looking for simple cultural practices that provide economic and environmental benefits. Nomenclature: Glyphosate; corn, Zea mays L.; cotton, Gossypium hirsutum L.; yellow nutsedge, Cyperus esculentis L.


Journal of Agricultural and Food Chemistry | 2009

Soil Depth and Tillage Effects on Glyphosate Degradation

Robert M. Zablotowicz; Cesare Accinelli; L. Jason Krutz; Krishna N. Reddy

The use of glyphosate-resistant crops facilitated the widespread adoption of no-tillage (NT) cropping systems. The experimental objectives were to determine glyphosate sorption, mineralization, and persistence at two depths [0-2 cm (A) and 2-10 cm (B)] in a silt loam managed under long-term conventional tillage (CT) or NT soybean. Relative to the other soils, organic carbon (OC) and fluorescein diacetate (FDA) hydrolytic activity were at least 1.4-fold higher in NT-A. Glyphosate K(d) values ranged from 78.2 to 48.1 and were not correlated with OC. Cumulative glyphosate mineralized after 35 days was highest in NT-A soil (70%), intermediate in CT-A and CT-B (63%), and least in NT-B (51%). Mineralization was positively correlated with OC and FDA activity, but negatively correlated with K(d), indicating that sorption decreased bioavailability. Independent of tillage and depth, the half-lives for 0.01 N CaCl(2) and 0.1 N NaOH extractable residues (bioavailable residues and residues bound to iron and aluminum oxides, respectively) were <or=1.2 h and <or=14.2 days, respectively. These data indicate that glyphosate sorption and persistence are similar between the surface of NT and CT soils and that the adoption of NT will likely have minimal impact on the risk for nontarget effects of glyphosate on soil microflora or transport in surface runoff.


Weed Science | 2010

Picloram and Aminopyralid Sorption to Soil and Clay Minerals

Brandon J. Fast; Jason A. Ferrell; Gregory E. MacDonald; L. Jason Krutz; William N. Kline

Abstract Research was conducted to determine picloram and aminopyralid sorption in five soils and three clay minerals and to determine if the potential for off-target movement of aminopyralid in soil is less than that of picloram. Nearly all sorption of picloram and aminopyralid occurred between 0 and 8 h, and the maximum theoretical sorption of picloram and aminopyralid were 10.3 and 15.2%, respectively. Freundlich distribution coefficients (Kf) for picloram ranged from 0.12 in a Cecil sandy loam to 0.81 in an Arredondo fine sand, while Kf values for aminopyralid ranged from 0.35 in a Cecil sandy loam to 0.96 in an Arredondo fine sand. Furthermore, Kf values of aminopyralid were higher than those of picloram in all soils tested. Kf values of picloram in clay minerals were 0.25 (kaolinite), 1.17 (bentonite), and 1,016.4 (montmorillonite), and those of aminopyralid were 5.63 (kaolinite), 2.29 (bentonite), and 608.90 (montmorillonite). It was concluded that soil sorption of aminopyralid was greater than that of picloram and that the potential for off-target movement of aminopyralid is less than that of picloram. Nomenclature: Aminopyralid; picloram.


Invasive Plant Science and Management | 2010

Ecotype Variability and Edaphic Characteristics for Cogongrass (Imperata cylindrica) Populations in Mississippi

Charles T. Bryson; L. Jason Krutz; Gary N. Ervin; Krishna N. Reddy; John D. Byrd

Abstract Cogongrass is a highly invasive, perennial grass that is found on all continents, except Antarctica. It continues to spread at an alarming rate in the southeastern United States. Cogongrass has been reported from a wide array of habitats; however, soils from areas where cogongrass grows have never been characterized. Live cogongrass plants, herbarium specimens, and soil samples were collected from 53 cogongrass populations from across the 10 physiographic regions and land use areas in Mississippi. Cogongrass leaf and inflorescence morphology varied among sites, and plants were found in soils varying widely in texture (ranging from 28 to 86% sand, 3 to 48% silt, and 6 to 43% clay), organic matter content (ranging from 0.9 to 5.0%), pH (ranging from 4.4 to 8.0), and nutrient status: 6 to 190 kg ha−1 (15 to 470 lb A−1) of phosphorus (P), 46 to 734 kg ha−1 of potassium (K), 150 to 7,620 kg ha−1 of calcium (Ca), 26 to 1,090 kg ha−1 of magnesium (Mg), 1 to 190 kg ha−1 of zinc (Zn), 145 to 800 kg ha−1 of estimated sulfur (S) based on organic matter, and 57 to 300 kg ha−1 of sodium (Na). These soil parameters were highly variable among cogongrass populations, even within physiographic regions or land use areas, and encompassed much of the soil physiochemical diversity within the state. Soil characteristics were significantly correlated with leaf length (Ca, K, Mg, P, Zn, and percentage of sand and silt), leaf width (Ca, P, Mg, and percentage of sand and silt), the leaf length-to-width ratio (K and P), inflorescence length (Na, P, and pH), inflorescence width (S, organic matter, and pH), and the inflorescence length-to-width ratio (S and organic matter). These data indicate that cogongrass is able to establish, emerge, grow, and reproduce on a wide array of soils in Mississippi. This ability provides cogongrass an advantage over other plant species that are more limited in the soil types that support their growth. Nomenclature: Cogongrass, Imperata cylindrica (L.) Beauv. IMPCY


International Journal of Agronomy | 2011

Can Leguminous Cover Crops Partially Replace Nitrogen Fertilization in Mississippi Delta Cotton Production

Robert M. Zablotowicz; Krishna N. Reddy; L. Jason Krutz; R. Earl Gordon; Ryan E. Jackson; Leslie D. Price

Petroleum prices impact cotton nitrogen (N) fertilization cost. A field study was conducted from 2005 to 2007 to assess the interactions of cover crop (none, Austrian winter pea (Pisum sativum spp. arvense) or hairy vetch (Vicia villosa Roth)) and N fertilization (0, 67 or 134 kg N/ha applied at planting) on N availability and cotton yield under reduced-tillage management. Nitrogen content in desiccated residues averaged 49, 220, and 183 kg N/ha, in no cover crop, Austrian winter pea, and hairy vetch, respectively. Seventy percent of N in the above ground cover crop was derived from biological N fixation. In 2005, cover crops decreased cotton yield, while fertilizer N had no effect. In 2006, cover crops did not affect yield, but yield was positively correlated with N rate. In 2007, in no N plots, cotton yields were 65% higher in cover crops than in no cover crop. However, yield from N fertilized cover crop plots were similar to N fertilized no cover plots. These results indicate that leguminous cover crops can provide over 150 kg N/ha, but this N may not be as effective as fertilizer N for lack of synchronization between cotton N requirements and N release from residues.


Pest Management Science | 2011

Aminopyralid soil residues affect rotational vegetable crops in Florida

Brandon J. Fast; Jason A. Ferrell; Gregory E. MacDonald; Brent A. Sellers; Andrew W. MacRae; L. Jason Krutz; William N. Kline

BACKGROUND Bahiagrass (Paspalum notatum Flueggé) is a poor host of several soilborne pests of vegetable crops; therefore vegetable crops are commonly grown in a rotation with bahiagrass pastures in Florida. The herbicide aminopyralid provides foliar and soil residual weed control and increases forage production in bahiagrass pastures; however, the soil residual activity of aminopyralid makes carryover injury likely in subsequent sensitive vegetable crops. Field research was conducted to determine the sensitivity of five vegetable crops to soil residues of aminopyralid. RESULTS At an aminopyralid soil concentration of 0.2 µg kg(-1) (the limit of quantitation for aminopyralid in this research), crop injury ratings were 48% (bell pepper), 67% (eggplant), 71% (tomato), 3% (muskmelon) and 3% (watermelon), and fruit yield losses (relative to the untreated control) at that concentration were 61, 64, 95, 8 and 14% in those respective crops. CONCLUSIONS The crops included in this research were negatively affected by aminopyralid at soil concentrations less than the limit of quantitation (0.2 µg kg(-1) ). Therefore, it was concluded that a field bioassay must be used to determine whether carryover injury will occur when these crops are planted on a site where aminopyralid has been previously applied.


Pest Management Science | 2009

Bromoxynil degradation in a Mississippi silt loam soil

Robert M. Zablotowicz; L. Jason Krutz; Cesare Accinelli; Krishna N. Reddy

BACKGROUND The objectives of these laboratory experiments were: (1) to assess bromoxynil sorption, mineralization, bound residue formation and extractable residue persistence in a Dundee silt loam collected from 0-2 cm and 2-10 cm depths under continuous conventional tillage and no-tillage; (2) to assess the effects of autoclaving on bromoxynil mineralization and bound residue formation; (3) to determine the partitioning of non-extractable residues; and (4) to ascertain the effects of bromoxynil concentration on extractable and bound residues and metabolite formation. RESULTS Bromoxynil K(d) values ranged from 0.7 to 1.4 L kg(-1) and were positively correlated with soil organic carbon. Cumulative mineralization (38.5% +/- 1.5), bound residue formation (46.5% +/- 0.5) and persistence of extractable residues (T(1/2) < 1 day) in non-autoclaved soils were independent of tillage and depth. Autoclaving decreased mineralization and bound residue formation 257-fold and 6.0-fold respectively. Bromoxynil persistence in soil was rate independent (T(1/2) < 1 day), and the majority of non-extractable residues (87%) were associated with the humic acid fraction of soil organic matter. CONCLUSIONS Irrespective of tillage or depth, bromoxynil half-life in native soil is less than 1 day owing to rapid incorporation of the herbicide into non-extractable residues. Bound residue formation is governed principally by biochemical metabolite formation and primarily associated with soil humic acids that are moderately bioavailable for mineralization. These data indicate that the risk of off-site transport of bromoxynil residues is low owing to rapid incorporation into non-extractable residues.

Collaboration


Dive into the L. Jason Krutz's collaboration.

Top Co-Authors

Avatar

Robert M. Zablotowicz

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale L. Shaner

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Clifford H. Koger

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Martin A. Locke

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Weaver

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

W. Brien Henry

Mississippi State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge