Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L.K. Mien is active.

Publication


Featured researches published by L.K. Mien.


Human Brain Mapping | 2009

Aggression is related to frontal serotonin-1A receptor distribution as revealed by PET in healthy subjects

A. Veronica Witte; Agnes Flöel; P. Stein; Markus Savli; L.K. Mien; Wolfgang Wadsak; Christoph Spindelegger; Ulrike Moser; Martin Fink; Andreas Hahn; Markus Mitterhauser; Kurt Kletter; Siegfried Kasper; Rupert Lanzenberger

Objectives: Various studies indicate that serotonin regulates impulsivity and the inhibitory control of aggression. Aggression is also known to be modified by sex hormones, which exert influence on serotonergic neurotransmission. The present study aimed to elucidate potential interactions between human aggression, the inhibitory serotonergic 5‐HT1A receptor, and sex hormones. Experimental Design: Thirty‐three healthy volunteers (16 women, aged 26.24 ± 5.5 yr) completed a validated questionnaire incorporating five dimensions of aggression. Subsequently, all subjects underwent positron emission tomography with the radioligand [carbonyl‐11C]WAY‐100635 to quantify 5‐HT1A binding potentials (BPNDs) in the prefrontal cortex, limbic areas, and midbrain. Also, plasma levels of testosterone, 17ß‐estradiol and sex hormone‐binding globulin (SHBG) were measured. Relations between aggression scores, regional 5‐HT1A BPNDs, and hormone levels were analyzed using correlations, multivariate analyses of variance, and linear regressions. Principal Observations: Statistical analyses revealed higher 5‐HT1A receptor BPNDs in subjects exhibiting higher aggression scores in prefrontal (all P < 0.041) and anterior cingulate cortices (P = 0.016). More aggressive subjects were also characterized by lower SHBG levels (P = 0.015). Moreover, higher SHBG levels were associated with lower 5‐HT1A BPNDs in frontal (P = 0.048) and cingulate cortices (all P < 0.013) and in the amygdala (P = 0.03). Conclusions: The present study provides first‐time evidence for a specific interrelation between the 5‐HT1A receptor distribution, sex hormones, and aggression in humans. Our findings point to a reduced down‐stream control due to higher amounts or activities of frontal 5‐HT1A receptors in more aggressive subjects, which is presumably modulated by sex hormones. Hum Brain Mapp 30:2558–2570, 2009.


NeuroImage | 2009

Lateralization of the serotonin-1A receptor distribution in language areas revealed by PET

Martin Fink; Wolfgang Wadsak; Markus Savli; P. Stein; Ulrike Moser; Andreas Hahn; L.K. Mien; Kurt Kletter; Markus Mitterhauser; Siegfried Kasper; Rupert Lanzenberger

Lateralization is a well described aspect of the human brain. A plethora of morphological, cytological and functional studies describes hemispheric asymmetry in auditory and language areas. However, no study has reported cortical lateralization in the healthy human brain in vivo on the level of neurotransmitter receptors and in relation to functional organization so far. In this study, we assessed the distribution of the main inhibitory serotonergic receptor (the 5-HT1A receptor) and analyzed its regional binding with regard to hemisphere, sex and plasma levels of sex steroid hormones (testosterone, estradiol, progesterone). We quantified the 5-HT1A receptor binding potential by positron emission tomography (PET) using the highly selective and specific radioligand [carbonyl-11C]WAY-100635 and measured hormone levels in thirty-four (16 females, 18 males) healthy right-handed subjects. The obtained data were analyzed in an automated region of interest (ROI) based approach investigating 14 auditory, language and limbic areas. We found significantly higher 5-HT1A receptor binding in the superior and middle frontal gyri of the right hemisphere, the triangular and orbital parts of the inferior frontal gyrus, the supramarginal gyrus, the superior gyrus of the temporal pole and the middle temporal gyrus. Regions of the primary and secondary auditory cortex (Heschls gyrus and superior temporal gyrus) and the Rolandic operculum displayed significantly higher receptor binding in the left hemisphere. 5-HT1A receptor binding was 1.8-2.9% higher in right frontal ROIs and 2-3.6% higher in left primary and secondary auditory regions. There was no hemispheric difference in 5-HT(1A) receptor binding in the hippocampus, amygdala, and insula. Post-hoc testing suggested that lateralization of 5-HT1A receptor binding differed between the sexes in the triangular part of the inferior frontal gyrus. For the first time, this PET study shows lateralization of the main inhibitory receptor of the serotonergic system in functionally asymmetric organized regions of the healthy human brain in vivo.


The International Journal of Neuropsychopharmacology | 2010

Cortisol plasma levels in social anxiety disorder patients correlate with serotonin-1A receptor binding in limbic brain regions

Rupert Lanzenberger; Wolfgang Wadsak; Christoph Spindelegger; Markus Mitterhauser; Elena Akimova; L.K. Mien; Martin Fink; Ulrike Moser; Markus Savli; Georg S. Kranz; Andreas Hahn; Kurt Kletter; Siegfried Kasper

Dysregulation of the hypothalamic-pituitary-adrenocortical axis with deficient glucocorticoid feedback and alterations in the serotonergic system have been identified as biological correlates of mood disorders. Close examination of the interaction between these systems may offer insights into the pathophysiology of anxiety disorders and depression to understand how stress and these disorders are related. In this study, we investigated the relationship between plasma levels of cortisol and the dominant inhibitory serotonergic receptor, serotonin-1A (5-HT1A). Using positron emission tomography (PET) and the radioligand [carbonyl-11C]WAY-100635, we quantified the 5-HT1A receptor binding. Data from 12 male patients with social phobia and 18 matched control subjects were analysed. Seven brain regions were investigated: the anterior and posterior cingulate cortices, hippocampus, amygdala, medial orbitofrontal and retrosplenial cortices, and dorsal raphe nucleus. Partial correlation analysis, controlled for age and radiochemical variables, was performed to demonstrate the association between cortisol plasma levels and 5-HT1A receptor binding. Cortisol plasma levels were significantly lower in patients with social phobia compared to healthy controls. Moreover, we found strong negative correlations between cortisol plasma levels and 5-HT1A binding in the amygdala (r=-0.93, p=0.0004), hippocampus (r=-0.80, p=0.009), and retrosplenial cortex (r=-0.48, p=0.04) in patients with social phobia. Within the former two regions, these associations were significantly higher in patients than in healthy controls. This PET study confirms a negative association between plasma cortisol levels and the 5-HT1A receptor distribution consistent with studies in rodents and non-human primates. Dysregulation of the cortisol level might increase the vulnerability for mood disorders by altering limbic 5-HT1A receptors.


World Journal of Biological Psychiatry | 2012

Light-dependent alteration of serotonin-1A receptor binding in cortical and subcortical limbic regions in the human brain

Christoph Spindelegger; P. Stein; Wolfgang Wadsak; Martin Fink; Markus Mitterhauser; Ulrike Moser; Markus Savli; L.K. Mien; Elena Akimova; Andreas Hahn; M. Willeit; Kurt Kletter; Siegfried Kasper; Rupert Lanzenberger

Abstract Objective. Climate, in particular sunshine, influences mood and energy levels, creating a positive upswing of mood on bright, sunny days and negative downswing in cold, dark winter seasons. Higher serotonin transporter availability in healthy human subjects in times of lesser light exposure and lower serotonin levels have been shown in winter. Methods. We examined the light-dependent variations in serotonin-1A receptor binding in limbic regions in 36 drug-naive healthy human subjects. Receptor binding was quantified using positron emission tomography and the radioligand [carbonyl-11C]WAY-100635. Binding potential values were related to the amount of individual exposure to sunlight (daily duration of sunshine) and global radiation (total light intensity). Results. We found a 20–30% lower serotonin-1A receptor binding in the group exposed to a lower amount of global light radiation. Partial correlation analysis revealed significant positive correlations between the regional postsynaptic serotonin-1A receptor binding and global radiation accumulated over a period of 5 days. Conclusions. Seasonal factors, such as daily amount of sunshine and global radiation, influence serotonin-1A receptor binding in limbic brain regions of healthy human subjects. Combined with recently demonstrated seasonal fluctuations in the serotonin transporter availability, our results underline the importance of seasonal factors in the regulation of the serotonergic transmission.


Epilepsy & Behavior | 2010

Central serotonin 1A receptor binding in temporal lobe epilepsy: A [carbonyl-11C]WAY-100635 PET study

Eva Assem-Hilger; Rupert Lanzenberger; Markus Savli; Wolfgang Wadsak; Markus Mitterhauser; L.K. Mien; Elisabeth Stogmann; Christoph Baumgartner; Kurt Kletter; Susanne Asenbaum

We performed positron emission tomography using [carbonyl-(11)C]WAY-100635, a serotonin 1A (5-HT(1A)) receptor antagonist, in 13 patients with temporal lobe epilepsy (TLE) and in 13 controls. 5-HT(1A) receptor distribution mapping allowed correct lateralization of the epileptogenic temporal lobe in all patients. 5-HT(1A) receptor binding potential (BP(ND)) was significantly reduced in almost all temporal regions of the epileptogenic lobe. Compared with controls, the patients had significantly decreased BP(ND) values in the hippocampus, parahippocampal gyrus, and amygdala. The asymmetry index (AI), which characterizes the interhemispheric asymmetry in BP(ND), was significantly higher in patients than in controls in most regions. Depression scores were not significantly correlated with BP(ND) or AI values. Our data provide further evidence of functional changes in the serotonergic system in TLE. Molecular imaging of the 5-HT(1A) receptor may help to define the in vivo neurochemistry of TLE, and may provide a valuable tool in the noninvasive presurgical assessment of patients with medically refractory TLE.


Nuclear Medicine and Biology | 2011

Microfluidic preparation of [18F]FE@SUPPY and [18F]FE@SUPPY:2 — comparison with conventional radiosyntheses

Johanna Ungersboeck; Cécile Philippe; L.K. Mien; Daniela Haeusler; Karem Shanab; Rupert Lanzenberger; Helmut Spreitzer; Bernhard K. Keppler; Robert Dudczak; Kurt Kletter; Markus Mitterhauser; Wolfgang Wadsak

INTRODUCTIONnRecently, first applications of microfluidic principles for radiosyntheses of positron emission tomography compounds were presented, but direct comparisons with conventional methods were still missing. Therefore, our aims were (1) the set-up of a microfluidic procedure for the preparation of the recently developed adenosine A(3)-receptor tracers [(18)F]FE@SUPPY [5-(2-[(18)F]fluoroethyl)2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate] and [(18)F]FE@SUPPY:2 [5-ethyl-2,4-diethyl-3-((2-[(18)F]fluoroethyl)sulfanylcarbonyl)-6-phenylpyridine-5-carboxylate] and (2) the direct comparison of reaction conditions and radiochemical yields of the no-carrier-added nucleophilic substitution with [(18)F]fluoride between microfluidic and conventional methods.nnnMETHODSnFor the determination of optimal reaction conditions within an Advion NanoTek synthesizer, 5-50 μl of precursor and dried [(18)F]fluoride solution were simultaneously pushed through the temperature-controlled reactor (26 °C-180 °C) with defined reactant bolus flow rates (10-50 μl/min). Radiochemical incorporation yields (RCIYs) and overall radiochemical yields for large-scale preparations were compared with data from conventional batch-mode syntheses.nnnRESULTSnOptimal reaction parameters for the microfluidic set-up were determined as follows: 170 °C, 30-μl/min pump rate per reactant (reaction overall flow rate of 60 μl/min) and 5-mg/ml precursor concentration in the reaction mixture. Applying these optimized conditions, we observed a significant increase in RCIY from 88.2% to 94.1% (P < .0001, n ≥ 11) for [(18)F]FE@SUPPY and that from 42.5% to 95.5% (P<.0001, n ≥ 5) for [(18)F]FE@SUPPY:2 using microfluidic instead of conventional heating. Precursor consumption was decreased from 7.5 and 10 mg to 1 mg per large-scale synthesis for both title compounds, respectively.nnnCONCLUSIONnThe direct comparison of radiosyntheses data applying a conventional method and a microfluidic approach revealed a significant increase of RCIY using the microfluidic approach.


Applied Radiation and Isotopes | 2009

Simple and rapid preparation of [11C]DASB with high quality and reliability for routine applications.

Daniela Haeusler; L.K. Mien; Lukas Nics; Johanna Ungersboeck; Cécile Philippe; Rupert Lanzenberger; Kurt Kletter; Robert Dudczak; Markus Mitterhauser; Wolfgang Wadsak

[(11)C]DASB combines all major prerequisites for a successful SERT-ligand, providing excellent biological properties and in-vivo behaviour. Thus, we aimed to establish a fully automated procedure for the synthesis and purification of [(11)C]DASB with a high degree of reliability reducing the overall synthesis time while conserving high yields and purity. The optimized [(11)C]DASB synthesis was applied in more than 60 applications with a very low failure rate (3.2%). We obtained yields up to 8.9 GBq (average 5.3+/-1.6 GBq). Radiochemical yields based on [(11)C]CH(3)I, (corrected for decay) were 66.3+/-6.9% with a specific radioactivity (A(s)) of 86.8+/-24.3 GBq/micromol (both at the end of synthesis, EOS). Time consumption was kept to a minimum, resulting in 43 min from end of bombardment to release of the product after quality control. From our data, it is evident that the presented method can be implemented for routine preparations of [(11)C]DASB with high reliability.


Neuroscience Letters | 2010

Hypothalamic serotonin-1A receptor binding measured by PET predicts the plasma level of dehydroepiandrosterone sulfate in healthy women

Ulrike Moser; Wolfgang Wadsak; Christoph Spindelegger; Markus Mitterhauser; L.K. Mien; Christian Bieglmayer; Kurt Kletter; Siegfried Kasper; Rupert Lanzenberger

Serotonin modulates the activity of the hypothalamic-pituitary-adrenal (HPA) axis particularly via the serotonin-1A receptor (5-HT(1A)). Therefore, the rationale of this positron emission tomography (PET) study was to investigate the influence of the 5-HT(1A) receptor distribution in the human brain on plasma levels of dehydroepiandrosterone sulfate (DHEAS) and cortisol in vivo. Eighteen healthy female were measured with PET and the selective 5-HT(1A) receptor radioligand [carbonyl-(11)C]WAY-100635. Nine a priori defined brain regions (hypothalamus, orbitofrontal cortex, amygdala, hippocampus, anterior and posterior cingulate cortices, dorsal raphe nucleus, retrosplenial cortex, and insula) and the cerebellum (reference region) were delineated on coregistered MR images. DHEAS and cortisol plasma levels were collected by blood sampling in the morning of the PET day. Linear regression analysis of DHEAS plasma level as dependent variable and hypothalamic 5-HT(1A) receptor binding potential (BP) as independent variable showed a highly significant association (r=.691, p=.002). The hypothalamic 5-HT(1A) BP predicted 47.7% of the variability in DHEAS plasma levels. Regressions were borderline significant (p<.01, Bonferroni corrected threshold <.0056) between 5-HT(1A) BP in the anterior cingulate and orbitofrontal cortices and free cortisol levels. No significant associations between DHEAS or cortisol and the 5-HT(1A) receptor BP in other investigated brain regions were found. In conclusion, the serotonergic system may influence the DHEAS plasma level by modulating CRH and ACTH release via hypothalamic 5-HT(1A) receptors as reported for cortisol before. As disturbances of the HPA axis as well as changes of the 5-HT(1A) receptor distribution have been reported in affective disorders, future studies should focus on these interactions.


Nuclear Medicine and Biology | 2008

Metabolism and autoradiographic evaluation of [18F]FE@CIT: a Comparison with [123I]β-CIT and [123I]FP-CIT

Dagmar E. Ettlinger; Daniela Häusler; Wolfgang Wadsak; Friedrich Girschele; Karoline Sindelar; L.K. Mien; Johanna Ungersböck; Helmut Viernstein; Kurt Kletter; Robert Dudczak; Markus Mitterhauser

PURPOSEnSince the late 1980s, cocaine analogues based on the phenyltropane structure, such as [(11)C]CFT and [(123)I]beta-CIT have been used for the imaging of the dopamine transporter. FE@CIT (fluoropropyl ester) and FP-CIT (N-fluoropropyl derivative) are further analogues. The aim of this study was to (1) evaluate and compare the metabolic stability of beta-CIT, FP-CIT and FE@CIT against carboxyl esterases and (2) evaluate selectivity of [(18)F]FE@CIT compared to [(123)I]beta-CIT and [(123)I]FP-CIT using autoradiography.nnnMETHODSnIn vitro enzymatic hydrolysis assays were performed using different concentrations of beta-CIT, FE@CIT and FP-CIT with constant concentrations of carboxyl esterase. Autoradiography was performed on coronal 20-microm rat brain sections incubated with different radioactivity concentrations of [(123)I]beta-CIT, [(123)I]FP-CIT or [(18)F]FE@CIT and, additionally, with 3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile [serotonin transporter (SERT)] and nisoxetine [norepinephrine transporter (NET)] for blocking experiments.nnnRESULTSnIn vitro assays showed Michaelis-Menten constants of 175 micromol (beta-CIT), 183 micromol (FE@CIT) and 521 micromol (FP-CIT). Limiting velocities were 0.1005 micromol/min (beta-CIT), 0.1418 micromol/min (FE@CIT) and 0.1308 micromol/min (FP-CIT). This indicates a significantly increased stability of FP-CIT, whereas carboxyl esterase stability of beta-CIT and FE@CIT showed no significant difference. Autoradiographic analyses revealed a good correlation between dopamine transporter (DAT)-rich regions and the uptake pattern of FE@CIT. Blocking experiments showed a higher DAT selectivity for [(18)F]FE@CIT than for the other two tracers.nnnCONCLUSIONnWe found that (1) the metabolic stability of FE@CIT was comparable to that of beta-CIT, whereas FP-CIT showed higher resistance to enzymatic hydrolysis; and (2) the overall uptake pattern of [(18)F]FE@CIT on brain slices was comparable to that of [(123)I]beta-CIT and [(123)I]FPCIT. After blocking of NET and SERT binding, a significantly higher DAT selectivity was observed for [(18)F]FE@CIT. Hence, [(18)F]FE@CIT may be of interest for further clinical application.


NeuroImage | 2010

Escitalopram enhances associations of pre-postsynaptic but not post-postsynaptic serotonin-1A receptor binding in anxiety disorders

Andreas Hahn; Rupert Lanzenberger; Christoph Spindelegger; Ulrike Moser; L.K. Mien; Wolfgang Wadsak; Markus Mitterhauser; Siegfried Kasper

Purpose: By blocking the serotonin transporter, selective reuptake inhibitors (SSRIs) increase serotonergic neurotransmission and alter receptor function. Although for healthy subjects strong correlations of serotonin-1A receptors (5-HT1A) between limbic areas have been reported, treatment-induced changes on a network level largely remain unknown. Here, we investigated the association between preand postsynaptic 5HT1A receptors before and after sustained escitalopram treatment.

Collaboration


Dive into the L.K. Mien's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rupert Lanzenberger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Siegfried Kasper

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurt Kletter

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

P. Stein

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Markus Savli

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Andreas Hahn

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Ulrike Moser

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge