Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Knapp is active.

Publication


Featured researches published by L. Knapp.


Drug Design Development and Therapy | 2013

Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood-brain barrier permeability

Gáspár Oláh; Judit Herédi; Ákos Menyhárt; Zsolt Czinege; Dávid Nagy; János Fuzik; K. Kocsis; L. Knapp; Erika Krucsó; Levente Gellért; Zsolt Kis; Tamás Farkas; Ferenc Fülöp; Árpád Párdutz; János Tajti; László Vécsei; József Toldi

Cortical spreading depression (CSD) involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA) and dizocilpine, on CSD and the related blood–brain barrier (BBB) permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid). We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease the permeability of the BBB during CSD. These results suggest that KYNA itself or its derivatives may offer a new approach in the therapy of migraines.


Neuroscience | 2014

Acetyl-l-carnitine normalizes the impaired long-term potentiation and spine density in a rat model of global ischemia

K. Kocsis; L. Knapp; Levente Gellért; G. Oláh; Zs. Kis; Hiroki Takakuwa; Naoki Iwamori; Etsuro Ono; József Toldi; Tamás Farkas

As a consequence of an ischemic episode, energy production is disturbed, leading to neuronal cell death. Despite intensive research, the quest for promising neuroprotective drugs has largely failed, not only because of ineffectiveness, but also because of serious side-effects and dosing difficulties. Acetyl-l-carnitine (ALC) is an essential nutrient which plays a key role in energy metabolism by transporting fatty acids into mitochondria for β-oxidation. It is an endogenous compound and can be used at high dose without toxicity in research into ischemia. Its neuroprotective properties have been reported in many studies, but its potential action on long-term potentiation (LTP) and dendritic spine density has not been described to date. The aim of the present study was an evaluation of the possible protective effect of ALC after ischemic insults inflicted on hippocampal synaptic plasticity in a 2-vessel occlusion (2VO) model in rats. For electrophysiological measurements, LTP was tested on hippocampal slices. The Golgi-Cox staining technique was used to determine spine density. 2VO resulted in a decreased, unstable LTP and a significant loss of dendritic spines. ALC administered after 2VO was not protective, but as pretreatment prior to 2VO it restored LTP nearly to the control level. This finding paralleled the histological analysis: ALC pretreatment resulted in the reappearance of dendritic spines on the CA1 pyramidal cells. Our data demonstrate that ALC administration can restore hippocampal function and spine density. ALC probably acts by enhancing the aerobic metabolic pathway, which is inhibited during and following ischemic attacks.


Cellular and Molecular Neurobiology | 2015

Neuroprotective Effect of Oxaloacetate in a Focal Brain Ischemic Model in the Rat

L. Knapp; Levente Gellért; K. Kocsis; Zsolt Kis; Tamás Farkas; László Vécsei; József Toldi

During an ischemic event, the well-regulated glutamate (Glu) homeostasis is disturbed, which gives rise to extremely high levels of this excitatory neurotransmitter in the brain tissues. It was earlier reported that the administration of oxaloacetate (OxAc) as a Glu scavenger reduces the Glu level in the brain by enhancing the brain-to-blood Glu efflux. Here, we studied the neuroprotective effect of OxAc administration in a new focal ischemic model in rats. Occlusion of the middle cerebral artery resulted in immediate reduction of the somatosensory-evoked responses (SERs), and the amplitudes remained at the reduced level throughout the whole ischemic period. On reperfusion, the SERs started to increase, but never reached the control level. OxAc proved to be protective, since the amplitudes started to recover even during the ischemia, and finally fully regained the control level. The findings of the histological measurements were in accordance with the electrophysiological data. After Fluoro Jade C staining, significantly fewer labeled cells were detected in the OxAc-treated group relative to the control. These results provide new evidence of the neuroprotective effect of OxAc against ischemic injury, which strengthens the likelihood of its future applicability as a novel neuroprotective agent for the treatment of ischemic stroke patients.


Neuroscience | 2013

FUNDAMENTAL INTERSTRAIN DIFFERENCES IN CORTICAL ACTIVITY BETWEEN WISTAR AND SPRAGUE-DAWLEY RATS DURING GLOBAL ISCHEMIA

János Fuzik; Levente Gellért; Gáspár Oláh; Judit Herédi; K. Kocsis; L. Knapp; Dávid Nagy; Zsigmond Tamás Kincses; Zsolt Kis; Tamás Farkas; József Toldi

Four-vessel occlusion (4VO), a frequently used model of global cerebral ischemia in rats, results in a dysfunction in wide brain areas, including the cerebral cortex and hippocampus. However, there are pronounced differences in response to global ischemia between the laboratory rat strains used in these studies. In the present work, the immediate acute effects of 4VO-induced global ischemia on the spontaneous electrocorticogram (ECoG) signals were analyzed in Wistar and Sprague-Dawley rats. The ECoG was isoelectric during the 10 min of global cerebral ischemia in Wistar rats and the first burst (FB) was seen 10-13 min after the start of reperfusion. In Sprague-Dawley rats, the FB was detected immediately after the start of 4VO or a few seconds later. The burst suppression ratio (BSR) in Wistar rats decreased to 45% in 5 min after FB, and after 25 min it was approximately 40%. In Sprague-Dawley rats, the BSR was 55% immediately after the FB and it decreased steeply to reach 0% by 10 min. There was also a significant difference between the two strains in the frequency composition of the ECoG pattern. The power spectral densities of the two strains differed virtually throughout the post-ischemic state. The histological results (Evans Blue, Cresyl Violet and Fluoro Jade C stainings) supplemented the electrophysiological data: the neuronal damage in the CA1 pyramids in Wistar rats was severe, whereas in the Sprague-Dawley animals it was only partial. These observations clearly demonstrate that the use of different rat strains (e.g. Wistar vs. Sprague-Dawley) can be a source of considerable variability in the results of acute experiments on global ischemia and it is important that the laboratory rats used in such experiments should be carefully chosen.


Neuroscience | 2013

Post-ischemic treatment with L-kynurenine sulfate exacerbates neuronal damage after transient middle cerebral artery occlusion.

Levente Gellért; L. Knapp; K. Németh; Judit Herédi; Dániel Varga; Gáspár Oláh; K. Kocsis; Ákos Menyhárt; Zsolt Kis; Tamás Farkas; László Vécsei; József Toldi

Since brain ischemia is one of the leading causes of adult disability and death, neuroprotection of the ischemic brain is of particular importance. Acute neuroprotective strategies usually have the aim of suppressing glutamate excitotoxicity and an excessive N-methyl-d-aspartate (NMDA) receptor function. Clinically tolerated antagonists should antagonize an excessive NMDA receptor function without compromising the normal synaptic function. Kynurenic acid (KYNA) an endogenous metabolite of the tryptophan metabolism, may be an attractive neuroprotectant in this regard. The manipulation of brain KYNA levels was earlier found to effectively enhance the histopathological outcome of experimental ischemic/hypoxic states. The present investigation of the neuroprotective capacity of L-kynurenine sulfate (L-KYNs) administered systemically after reperfusion in a novel distal middle cerebral artery occlusion (dMCAO) model of focal ischemia/reperfusion revealed that in contrast with earlier results, treatment with L-KYNs worsened the histopathological outcome of dMCAO. This contradictory result indicates that post-ischemic treatment with L-KYNs may be harmful.


Neuroscience Letters | 2013

Paradox effects of kynurenines on LTP induction in the Wistar rat. An in vivo study

I. Demeter; K. Nagy; Tamás Farkas; Zs. Kis; K. Kocsis; L. Knapp; Levente Gellért; Ferenc Fülöp; László Vécsei; J. Toldi

Kynurenic acid (KYNA), a neuroactive metabolite of tryptophan that acts on different receptors (e.g. those of N-methyl-D-aspartate (NMDA) and presynaptic α7 nicotinic acetylcholine (nACh)), exerts fundamentally antiglutamatergic effects. In view of its antiglutamatergic properties, an elevation of the KYNA level within the brain might result in neuroprotection. However, the use of KYNA as a neuroprotective agent is rather limited, because it crosses the blood-brain barrier (BBB) to only a poor extent. During recent years, new KYNA derivatives have been developed which can readily traverse the BBB and also exert neuroprotection. However, as KYNA and its derivatives are able to interfere with glutamatergic and cholinergic transmission, the potential risks of interfering with cognitive functions cannot be excluded. This in vivo study on anesthetized rats therefore tested the effects of the administration of KYNA and a KYNA derivative (SZR72) (in a dosage that exerted neuroprotection) on long-term potentiation (LTP) and pure field excitatory postsynaptic potentials induced by contralateral CA3 region stimulation and recorded in the pyramidal layer of the CA1 region of the hippocampus. Surprisingly, KYNA and this derivative did not reduce, but rather increased the induceability of LTP. The possible explanation is discussed in detail. In brief: an elevated KYNA level in the perisynaptic area produced, for example, by exogenous prodrug or derivative administration exerts preferential effects on the extrasynaptic NMDA receptors and the nACh receptors on presynaptic glutamatergic terminals, while sparing the currents mediated by synaptic NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptors. This might be the explanation why the treatment with the prodrug of KYNA or the KYNA derivative in a dosage which induced neuroprotection did not reduce the cognitive functions or the LTP.


Neuroscience | 2016

Acetyl-l-carnitine restores synaptic transmission and enhances the inducibility of stable LTP after oxygen-glucose deprivation.

K. Kocsis; Rita Frank; József A. Szabó; L. Knapp; Zsolt Kis; Tamás Farkas; László Vécsei; József Toldi

Hypoxic circumstances result in functional and structural impairments of the brain. Oxygen-glucose deprivation (OGD) on hippocampal slices is a technique widely used to investigate the consequences of ischemic stroke and the potential neuroprotective effects of different drugs. Acetyl-l-carnitine (ALC) is a naturally occurring substance in the body, and it can therefore be administered safely even in relatively high doses. In previous experiments, ALC pretreatment proved to be effective against global hypoperfusion. In the present study, we investigated whether ALC can be protective in an OGD model. We are not aware of any earlier study in which the long-term potentiation (LTP) function on hippocampal slices was measured after OGD. Therefore, we set out to determine whether an effective ALC concentration has an effect on synaptic plasticity after OGD in the hippocampal CA1 subfield of rats. A further aim was to investigate the mechanism underlying the protective effect of this compound. The experiments revealed that ALC is neuroprotective against OGD in a dose-dependent manner, which is manifested not only in the regeneration of the impaired synaptic transmission after the OGD, but also in the inducibility and stability of the LTP. In the case of the most effective concentration of ALC (500μM), use of a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002) revealed that the PI3K/Akt signaling pathway has a key role in the restoration of the synaptic transmission and plasticity reached by ALC treatment.


Drug Design Development and Therapy | 2016

Nitroglycerin enhances the propagation of cortical spreading depression: Comparative studies with sumatriptan and novel kynurenic acid analogues

L. Knapp; Bence Szita; K. Kocsis; László Vécsei; József Toldi

Background The complex pathophysiology of migraine is not yet clearly understood; therefore, experimental models are essential for the investigation of the processes related to migraine headache, which include cortical spreading depression (CSD) and NO donor-induced neurovascular changes. Data on the assessment of drug efficacy in these models are often limited, which prompted us to investigate a novel combined migraine model in which an effective pharmacon could be more easily identified. Materials and methods In vivo electrophysiological experiments were performed to investigate the effect of nitroglycerin (NTG) on CSD induced by KCl application. In addition, sumatriptan and newly synthesized neuroactive substances (analogues of the neuromodulator kynurenic acid [KYNA]) were also tested. Results The basic parameters of CSDs were unchanged following NTG administration; however, propagation failure was decreased compared to the controls. Sumatriptan decreased the number of CSDs, whereas propagation failure was as minimal as in the NTG group. On the other hand, both of the KYNA analogues restored the ratio of propagation to the control level. Discussion The ratio of propagation appeared to be the indicator of the effect of NTG. This is the first study providing direct evidence that NTG influences CSD; furthermore, we observed different effects of sumatriptan and KYNA analogues. Sumatriptan changed the generation of CSDs, whereas the analogues acted on the propagation of the waves. Our experimental design overlaps with a large spectrum of processes present in migraine pathophysiology, and it can be a useful experimental model for drug screening.


Neuropathology and Applied Neurobiology | 2014

A simple novel technique to induce short‐lasting local brain ischaemia in the rat

L. Knapp; Levente Gellért; Judit Herédi; K. Kocsis; Gáspár Oláh; János Fuzik; Zsolt Kis; László Vécsei; József Toldi; Tamás Farkas

Brain ischaemia models are essential to study the pathomechanisms of stroke. Our aim was to investigate the reliability and reproducibility of our novel focal ischaemia‐reperfusion model.


International Journal of Developmental Neuroscience | 2015

REMOVED: Paradox effects of kynurenines on LTP induction. An in vivo study in the Wistar rat

I. Demeter; K. Nagy; Tamás Farkas; Zs. Kis; K. Kocsis; L. Knapp; Levente Gellért; Ferenc Fülöp; László Vécsei; József Toldi

This article has been removed: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our‐business/policies/article‐withdrawal)

Collaboration


Dive into the L. Knapp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge