Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Levente Gellért is active.

Publication


Featured researches published by Levente Gellért.


European Journal of Pharmacology | 2011

Neuroprotection with a new kynurenic acid analog in the four-vessel occlusion model of ischemia

Levente Gellért; János Fuzik; Anikó Göblös; Kitti Sárközi; Máté Marosi; Zsolt Kis; Tamás Farkas; István Szatmári; Ferenc Fülöp; László Vécsei; József Toldi

Global forebrain ischemia results in damage to the pyramids in the CA1 hippocampal subfield, which is particularly vulnerable to excitotoxic processes. Morphological and functional disintegration of this area leads to a cognitive dysfunction and neuropsychiatric disorders. Treatment with N-methyl-d-aspartate receptor antagonists is a widely accepted method with which to stop the advance of excitotoxic processes and concomitant neuronal death. From a clinical aspect, competitive glycine- and polyamine-site antagonists with relatively low affinity and moderate side-effects are taken into account. Endogenous kynurenic acid acts as an antagonist on the obligatory co-agonist glycine site, and has long been at the focus of neuroprotective trials. In the present study, we estimated the neuroprotective capability of a novel kynurenic acid analog in transient global forebrain ischemia, measuring the rate of hippocampal CA1 pyramidal cell loss and the preservation of long-term potentiation at Schaffer collateral-CA1 synapses. The neuroprotective potential was reflected by a significantly diminished hippocampal CA1 cell loss and preserved long-term potentiation expression. The neuroprotective effect was robust in the event of pretreatment, and also when the drug was administered at the time of reperfusion. This result is beneficial since a putative neuroprotectant proven to be effective as post-treatment is of much greater benefit.


Molecular Psychiatry | 2015

Inhibition of parvalbumin-expressing interneurons results in complex behavioral changes

Jacquelyn A. Brown; Teniel S. Ramikie; Martin J. Schmidt; Rita Báldi; Krassimira A. Garbett; Monika Everheart; Lambert E. Warren; Levente Gellért; Szatmár Horváth; Sachin Patel; Karoly Mirnics

Reduced expression of the Gad1 gene-encoded 67-kDa protein isoform of glutamic acid decarboxylase (GAD67) is a hallmark of schizophrenia. GAD67 downregulation occurs in multiple interneuronal sub-populations, including the parvalbumin-positive (PVALB+) cells. To investigate the role of the PV-positive GABAergic interneurons in behavioral and molecular processes, we knocked down the Gad1 transcript using a microRNA engineered to target specifically Gad1 mRNA under the control of Pvalb bacterial artificial chromosome. Verification of construct expression was performed by immunohistochemistry. Follow-up electrophysiological studies revealed a significant reduction in γ-aminobutyric acid (GABA) release probability without alterations in postsynaptic membrane properties or changes in glutamatergic release probability in the prefrontal cortex pyramidal neurons. Behavioral characterization of our transgenic (Tg) mice uncovered that the Pvalb/Gad1 Tg mice have pronounced sensorimotor gating deficits, increased novelty-seeking and reduced fear extinction. Furthermore, NMDA (N-methyl-d-aspartate) receptor antagonism by ketamine had an opposing dose-dependent effect, suggesting that the differential dosage of ketamine might have divergent effects on behavioral processes. All behavioral studies were validated using a second cohort of animals. Our results suggest that reduction of GABAergic transmission from PVALB+ interneurons primarily impacts behavioral domains related to fear and novelty seeking and that these alterations might be related to the behavioral phenotype observed in schizophrenia.


Neurobiology of Disease | 2014

The role of cannabinoid 1 receptor expressing interneurons in behavior.

Jacquelyn A. Brown; Szatmár Horváth; Krassimira A. Garbett; Martin J. Schmidt; Monika Everheart; Levente Gellért; Philip J. Ebert; Karoly Mirnics

Schizophrenia is a devastating neurodevelopmental disorder that affects approximately 1% of the population. Reduced expression of the 67-kDa protein isoform of glutamic acid decarboxylase (GAD67) is a hallmark of the disease and is encoded by the GAD1 gene. In schizophrenia, GAD67 downregulation occurs in multiple interneuronal subpopulations, including the cannabinoid receptor type 1 positive (CNR1+) cells, but the functional consequences of these disturbances are not well understood. To investigate the role of the CNR1-positive GABA-ergic interneurons in behavioral and molecular processes, we employed a novel, miRNA-mediated transgenic mouse approach. We silenced the Gad1 transcript using a miRNA engineered to specifically target Gad1 mRNA under the control of Cnr1 bacterial artificial chromosome. Behavioral characterization of our transgenic mice showed elevated and persistent conditioned fear associated with an auditory cue and a significantly altered response to an amphetamine challenge. These deficits could not be attributed to sensory deficits or changes in baseline learning and memory. Furthermore, HPLC analyses revealed that Cnr1/Gad1 mice have enhanced serotonin levels, but not dopamine levels in response to amphetamine. Our findings demonstrate that dysfunction of a small subset of interneurons can have a profound effect on behavior and that the GABA-ergic, monoamine, and cannabinoid systems are functionally interconnected. The results also suggest that understanding the function of various interneuronal subclasses might be essential to develop knowledge-based treatment strategies for various mental disorders including schizophrenia and substance abuse.


Drug Design Development and Therapy | 2013

Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood-brain barrier permeability

Gáspár Oláh; Judit Herédi; Ákos Menyhárt; Zsolt Czinege; Dávid Nagy; János Fuzik; K. Kocsis; L. Knapp; Erika Krucsó; Levente Gellért; Zsolt Kis; Tamás Farkas; Ferenc Fülöp; Árpád Párdutz; János Tajti; László Vécsei; József Toldi

Cortical spreading depression (CSD) involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA) and dizocilpine, on CSD and the related blood–brain barrier (BBB) permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid). We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease the permeability of the BBB during CSD. These results suggest that KYNA itself or its derivatives may offer a new approach in the therapy of migraines.


Journal of Neural Transmission | 2012

Behavioural studies with a newly developed neuroprotective KYNA-amide

Levente Gellért; Dániel Varga; Marian Ruszka; József Toldi; Tamás Farkas; István Szatmári; Ferenc Fülöp; László Vécsei; Zsolt Kis

The neuroactive properties and neuroprotective potential of endogenous l-kynurenine, kynurenic acid (KYNA) and its derivatives are well established. KYNA acts as an antagonist on the obligatory co-agonist glycine site, and has long been at the focus of neuroprotective trials. Unfortunately, KYNA is barely able to cross the blood–brain barrier. Accordingly, the development and synthesis of KYNA analogs which can readily cross the BBB have been at the focus of research interest with the aim of neuroprotection. Earlier we reported a new KYNA-amide crosses the BBB and proved neuroprotective in several experiments. In the present study, we investigated the locomotor activity, working memory performance, and also the long-lasting, consolidated reference memory of animals treated intraperitoneally (i.p.) with the novel analog. The effects of the novel analog on the spatial orientation and learning ability of rats were assessed in the Morris water maze (MWM) paradigm. The effects on locomotor activity of mice was assessed in the open field (OF) paradigm, and those on the spatial orientation and learning ability of mice were investigated in the radial arm maze (RAM) paradigm. It emerged that there is a dose of this KYNA-amide which is neuroprotective, but does not worsen the cognitive function of the brain. This result is significant in that a putative neuroprotectant without adverse cognitive side-effects is of great benefit.


Bioorganic & Medicinal Chemistry | 2011

Synthesis and biological effects of some kynurenic acid analogs.

K. Nagy; I. Plangár; B. Tuka; Levente Gellért; Dániel Varga; I. Demeter; Tamás Farkas; Zs. Kis; M. Marosi; Dénes Zádori; Péter Klivényi; Ferenc Fülöp; István Szatmári; László Vécsei; József Toldi

The overactivation of excitatory amino acid receptors plays a key role in the pathomechanism of several neurodegenerative disorders and in ischemic and post-ischemic events. Kynurenic acid (KYNA) is an endogenous product of the tryptophan metabolism and, as a broad-spectrum antagonist of excitatory amino acid receptors, may serve as a protective agent in neurological disorders. The use of KYNA is excluded, however, because it hardly crosses the blood-brain barrier. Accordingly, new KYNA analogs which can readily cross this barrier and exert their complex anti-excitatory activity are generally needed. During the past 6 years, we have developed several KYNA derivatives, among others KYNA amides. These new analogs included one, N-(2-N,N-dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (KYNA-1), that has proved to be neuroprotective in several models. This paper reports on the synthesis of 10 new KYNA amides (KYNA-1-KYNA-10) and on the effectiveness of these molecules as inhibitors of excitatory synaptic transmission in the CA1 region of the hippocampus. The molecular structure and functional effects of KYNA-1 are compared with those of other KYNA amides. Behavioral studies with these KYNA amides demonstrated that they do not exert significant nonspecific general side-effects. KYNA-1 may therefore be considered a promising candidate for clinical studies.


Neuroscience | 2014

Acetyl-l-carnitine normalizes the impaired long-term potentiation and spine density in a rat model of global ischemia

K. Kocsis; L. Knapp; Levente Gellért; G. Oláh; Zs. Kis; Hiroki Takakuwa; Naoki Iwamori; Etsuro Ono; József Toldi; Tamás Farkas

As a consequence of an ischemic episode, energy production is disturbed, leading to neuronal cell death. Despite intensive research, the quest for promising neuroprotective drugs has largely failed, not only because of ineffectiveness, but also because of serious side-effects and dosing difficulties. Acetyl-l-carnitine (ALC) is an essential nutrient which plays a key role in energy metabolism by transporting fatty acids into mitochondria for β-oxidation. It is an endogenous compound and can be used at high dose without toxicity in research into ischemia. Its neuroprotective properties have been reported in many studies, but its potential action on long-term potentiation (LTP) and dendritic spine density has not been described to date. The aim of the present study was an evaluation of the possible protective effect of ALC after ischemic insults inflicted on hippocampal synaptic plasticity in a 2-vessel occlusion (2VO) model in rats. For electrophysiological measurements, LTP was tested on hippocampal slices. The Golgi-Cox staining technique was used to determine spine density. 2VO resulted in a decreased, unstable LTP and a significant loss of dendritic spines. ALC administered after 2VO was not protective, but as pretreatment prior to 2VO it restored LTP nearly to the control level. This finding paralleled the histological analysis: ALC pretreatment resulted in the reappearance of dendritic spines on the CA1 pyramidal cells. Our data demonstrate that ALC administration can restore hippocampal function and spine density. ALC probably acts by enhancing the aerobic metabolic pathway, which is inhibited during and following ischemic attacks.


Frontiers in Behavioral Neuroscience | 2015

Systemic L-Kynurenine sulfate administration disrupts object recognition memory, alters open field behavior and decreases c-Fos immunopositivity in C57Bl/6 mice

Dániel Varga; Judit Herédi; Zita Kánvási; Marian Ruszka; Zsolt Kis; Etsuro Ono; Naoki Iwamori; Tokuko Iwamori; Hiroki Takakuwa; László Vécsei; József Toldi; Levente Gellért

L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57Bl/6j mice.


Cellular and Molecular Neurobiology | 2015

Neuroprotective Effect of Oxaloacetate in a Focal Brain Ischemic Model in the Rat

L. Knapp; Levente Gellért; K. Kocsis; Zsolt Kis; Tamás Farkas; László Vécsei; József Toldi

During an ischemic event, the well-regulated glutamate (Glu) homeostasis is disturbed, which gives rise to extremely high levels of this excitatory neurotransmitter in the brain tissues. It was earlier reported that the administration of oxaloacetate (OxAc) as a Glu scavenger reduces the Glu level in the brain by enhancing the brain-to-blood Glu efflux. Here, we studied the neuroprotective effect of OxAc administration in a new focal ischemic model in rats. Occlusion of the middle cerebral artery resulted in immediate reduction of the somatosensory-evoked responses (SERs), and the amplitudes remained at the reduced level throughout the whole ischemic period. On reperfusion, the SERs started to increase, but never reached the control level. OxAc proved to be protective, since the amplitudes started to recover even during the ischemia, and finally fully regained the control level. The findings of the histological measurements were in accordance with the electrophysiological data. After Fluoro Jade C staining, significantly fewer labeled cells were detected in the OxAc-treated group relative to the control. These results provide new evidence of the neuroprotective effect of OxAc against ischemic injury, which strengthens the likelihood of its future applicability as a novel neuroprotective agent for the treatment of ischemic stroke patients.


Neuroscience | 2013

FUNDAMENTAL INTERSTRAIN DIFFERENCES IN CORTICAL ACTIVITY BETWEEN WISTAR AND SPRAGUE-DAWLEY RATS DURING GLOBAL ISCHEMIA

János Fuzik; Levente Gellért; Gáspár Oláh; Judit Herédi; K. Kocsis; L. Knapp; Dávid Nagy; Zsigmond Tamás Kincses; Zsolt Kis; Tamás Farkas; József Toldi

Four-vessel occlusion (4VO), a frequently used model of global cerebral ischemia in rats, results in a dysfunction in wide brain areas, including the cerebral cortex and hippocampus. However, there are pronounced differences in response to global ischemia between the laboratory rat strains used in these studies. In the present work, the immediate acute effects of 4VO-induced global ischemia on the spontaneous electrocorticogram (ECoG) signals were analyzed in Wistar and Sprague-Dawley rats. The ECoG was isoelectric during the 10 min of global cerebral ischemia in Wistar rats and the first burst (FB) was seen 10-13 min after the start of reperfusion. In Sprague-Dawley rats, the FB was detected immediately after the start of 4VO or a few seconds later. The burst suppression ratio (BSR) in Wistar rats decreased to 45% in 5 min after FB, and after 25 min it was approximately 40%. In Sprague-Dawley rats, the BSR was 55% immediately after the FB and it decreased steeply to reach 0% by 10 min. There was also a significant difference between the two strains in the frequency composition of the ECoG pattern. The power spectral densities of the two strains differed virtually throughout the post-ischemic state. The histological results (Evans Blue, Cresyl Violet and Fluoro Jade C stainings) supplemented the electrophysiological data: the neuronal damage in the CA1 pyramids in Wistar rats was severe, whereas in the Sprague-Dawley animals it was only partial. These observations clearly demonstrate that the use of different rat strains (e.g. Wistar vs. Sprague-Dawley) can be a source of considerable variability in the results of acute experiments on global ischemia and it is important that the laboratory rats used in such experiments should be carefully chosen.

Collaboration


Dive into the Levente Gellért's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Knapp

University of Szeged

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge