Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. L. Lao is active.

Publication


Featured researches published by L. L. Lao.


Nuclear Fusion | 1990

Equilibrium analysis of current profiles in tokamaks

L. L. Lao; J.R. Ferron; R. J. Groebner; W. Howl; H.E. St. John; E. J. Strait; T.S. Taylor

An efficient method is given for self-consistent reconstruction of the tokamak current profiles and their associated magnetic topology using the magnetohydrodynamic (MHD) equilibrium constraint from external magnetic measurements, kinetic profile measurements, internal poloidal magnetic field measurements, and topological information from soft X-ray (SXR) measurements. Illustrative examples for beam heated H-mode divertor discharges in the DIII-D tokamak are presented, using the experimentally measured kinetic profile information and external magnetic data from the existing diagnostics. Comparative reconstructions of the current profile using various combinations of diagnostics are given. Also presented is an alternative magnetic analysis method in which the MHD equilibrium is reconstructed using external magnetic data and a constraint on the edge pressure gradient. The results of a sensitivity study are given which show that the axial safety factor q(0) can be more accurately determined when additional information from internal poloidal magnetic measurements is used in conjunction with the external magnetic, kinetic and SXR topological data.


Nuclear Fusion | 1998

Real time equilibrium reconstruction for tokamak discharge control

J.R. Ferron; M.L. Walker; L. L. Lao; H.E. St. John; D.A. Humphreys; J.A. Leuer

A practical method for performing a tokamak equilibrium reconstruction in real time for arbitrary time varying discharge shapes and current profiles is described. An approximate solution to the Grad-Shafranov equilibrium relation is found which best fits the diagnostic measurements. Thus, a solution for the spatial distribution of poloidal flux and toroidal current density is available in real time that is consistent with plasma force balance, allowing accurate evaluation of parameters such as discharge shape and safety factor profile. The equilibrium solutions are produced at a rate sufficient for discharge control. This equilibrium reconstruction algorithm has been implemented on the digital plasma control system for the DIII-D tokamak. The first application of real time equilibrium reconstruction to discharge shape control is described.


Physics of Plasmas | 1994

Role of the radial electric field in the transition from L (low) mode to H (high) mode to VH (very high) mode in the DIII-D tokamak

K.H. Burrell; E. J. Doyle; P. Gohil; R. J. Groebner; J. Kim; R.J. La Haye; L. L. Lao; R. A. Moyer; T.H. Osborne; W. A. Peebles; C. L. Rettig; T. H. Rhodes; D. M. Thomas

The hypothesis of stabilization of turbulence by shear in the E×B drift speed successfully predicts the observed turbulence reduction and confinement improvement seen at the L (low)–H (high) transition; in addition, the observed levels of E×B shear significantly exceed the value theoretically required to stabilize turbulence. Furthermore, this same hypothesis is the best explanation to date for the further confinement improvement seen in the plasma core when the plasma goes from the H mode to the VH (very high) mode. Consequently, the most fundamental question for H‐mode studies now is: How is the electric field Er formed? The radial force balance equation relates Er to the main ion pressure gradient ∇Pi, poloidal rotation vθi, and toroidal rotation vφi. In the plasma edge, observations show ∇Pi and vθi are the important terms at the L–H transition, with ∇Pi being the dominant, negative term throughout most of the H mode. In the plasma core, Er is primarily related to vφi. There is a clear temporal and sp...


Physics of Plasmas | 1996

Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII‐D high performance discharges

L. L. Lao; K.H. Burrell; T.S. Casper

The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-{eta}{sub i}mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the {eta}{sub i} mode suggests that the large core {bold E x B} flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low {Beta}{sub N} {lt} 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity.


Physics of fluids. B, Plasma physics | 1993

Global Alfven modes: Theory and experiment

Alan D. Turnbull; E. J. Strait; W. W. Heidbrink; M. S. Chu; H.H. Duong; J. M. Greene; L. L. Lao; T.S. Taylor; S. J. Thompson

It is shown that the theoretical predictions and experimental observations of toroidicity‐induced Alfven eigenmodes (TAE’s) are now in good agreement, with particularly detailed agreement in the mode frequencies. Calculations of the driving and damping rates predict the importance of continuum damping for low toroidal mode numbers and this is confirmed experimentally. However, theoretical calculations in finite‐β, shaped discharges predict the existence of other global Alfven modes, in particular the ellipticity‐induced Alfven eigenmode (EAE) and a new mode, the beta‐induced Alfven eigenmode (BAE). The BAE mode is calculated to be in or below the same frequency range as the TAE mode and may contribute to the experimental observations at high β. Experimental evidence and complementary analyses are presented confirming the presence of the EAE mode at higher frequencies.


Physics of fluids. B, Plasma physics | 1992

A numerical study of the high‐n shear Alfvén spectrum gap and the high‐n gap mode

M. S. Chu; J. M. Greene; L. L. Lao; Alan D. Turnbull; M. S. Chance

The toroidicity‐induced gaps of the shear Alfven wave spectrum in tokamaks are shown to satisfy an envelope equation. The structure of these gaps, and the location of the high‐n gap modes, which are localized modes with frequency in the gap, are studied for general numerically generated equilibria. The dependence of the frequencies of the gaps and the gap modes on the equilibrium properties, such as elongation, triangularity, and β of the plasma are explored.


Fusion Science and Technology | 2005

MHD Equilibrium Reconstruction in the DIII-D Tokamak

L. L. Lao; H.E. St. John; Qian Lin Peng; J.R. Ferron; E. J. Strait; T. S. Taylor; W. H. Meyer; C. Zhang; K. I. You

Abstract Physics elements and advances crucial for the development of axisymmetric magnetohydrodynamic equilibrium reconstruction to support plasma operation and data analysis in the DIII-D tokamak are reviewed. A response function formalism and a Picard linearization scheme are used to efficiently combine the equilibrium and the fitting iterations and search for the optimum solution vector. Algorithms to incorporate internal current and pressure profile measurements, topological constraints, and toroidal plasma rotation into the equilibrium reconstruction are described. Choice of basis functions and boundary conditions essential for accurate reconstruction of L- and H-mode equilibrium plasma boundary and current and pressure profiles is discussed. The computational structure used to efficiently integrate these elements into the equilibrium reconstruction code EFIT is summarized.


Physics of Plasmas | 2004

Resistive wall mode stabilization with internal feedback coils in DIII-D

E. J. Strait; J. Bialek; I.N. Bogatu; M.S. Chance; M. S. Chu; Dana Harold Edgell; A. M. Garofalo; G.L. Jackson; R. J. Jayakumar; T. H. Jensen; O. Katsuro-Hopkins; J.S. Kim; R.J. La Haye; L. L. Lao; M. A. Makowski; G.A. Navratil; M. Okabayashi; H. Reimerdes; J. T. Scoville; Alan D. Turnbull; Diii-D Team

A set of twelve coils for stability control has recently been installed inside the DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] vacuum vessel, offering faster time response and a wider range of applied mode spectra than the previous external coils. Stabilization of the n=1 ideal kink mode is crucial to many high beta, steady-state tokamak scenarios. A resistive wall converts the kink to a slowly growing resistive wall mode (RWM). With feedback-controlled error field correction, rotational stabilization of the RWM has been sustained for more than 2.5 s. Using the internal coils, the required correction field is smaller than with the external coils, consistent with a better match to the mode spectrum of the error field. Initial experiments in direct feedback control have stabilized the RWMs at higher beta and lower rotation than could be achieved by the external coils in similar plasmas, in qualitative agreement with numerical modeling. The new coils have also allowed wall stabilization in plasmas with...


Nuclear Fusion | 1991

Observation of poloidal current flow to the vacuum vessel wall during vertical instabilities in the DIII-D tokamak

E. J. Strait; L. L. Lao; J.L. Luxon; E.E. Reis

An attached poloidal current, which flows in a circuit lying partly in the vacuum vessel wall and partly in the scrape-off layer of the plasma, is observed during vertical instabilities in the DIII-D tokamak. A direct measurement of the current, using Rogowski loops on several protective tiles at locations where the plasma contacts the wall, is in good agreement with the value determined from MHD equilibrium reconstructions using measured values of magnetic field and flux. This attached current, which can reach transient peaks of several hundred kiloamperes, interacts with the toroidal magnetic field to create a large vertical force on the vacuum vessel. The predicted motion of the vessel resulting from the measured currents agrees well with the observed displacement of the vacuum vessel.


Physics of Plasmas | 2006

Progress toward fully noninductive, high beta conditions in DIII-D

M. Murakami; M. R. Wade; C. M. Greenfield; T.C. Luce; J.R. Ferron; H.E. St. John; J.C. DeBoo; W.W. Heidbrink; Y. Luo; M. A. Makowski; T.H. Osborne; C. C. Petty; P.A. Politzer; S.L. Allen; M. E. Austin; K.H. Burrell; T. A. Casper; E. J. Doyle; A. M. Garofalo; P. Gohil; I.A. Gorelov; R. J. Groebner; A.W. Hyatt; R. J. Jayakumar; K. Kajiwara; C. Kessel; J.E. Kinsey; R.J. La Haye; L. L. Lao; A.W. Leonard

The DIII-D Advanced Tokamak (AT) program in the DIII-D tokamak [J. L. Luxon, Plasma Physics and Controlled Fusion Research, 1986, Vol. I (International Atomic Energy Agency, Vienna, 1987), p. 159] is aimed at developing a scientific basis for steady-state, high-performance operation in future devices. This requires simultaneously achieving 100% noninductive operation with high self-driven bootstrap current fraction and toroidal beta. Recent progress in this area includes demonstration of 100% noninductive conditions with toroidal beta, βT=3.6%, normalized beta, βN=3.5, and confinement factor, H89=2.4 with the plasma current driven completely by bootstrap, neutral beam current drive, and electron cyclotron current drive (ECCD). The equilibrium reconstructions indicate that the noninductive current profile is well aligned, with little inductively driven current remaining anywhere in the plasma. The current balance calculation improved with beam ion redistribution that was supported by recent fast ion diagno...

Collaboration


Dive into the L. L. Lao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. A. Lazarus

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge