Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Levenson is active.

Publication


Featured researches published by L. Levenson.


Astronomy and Astrophysics | 2010

HerMES: The SPIRE confusion limit

H. T. Nguyen; Bernhard Schulz; L. Levenson; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn; Matthew Joseph Griffin; M. Halpern; E. Hatziminaoglou

We report on the sensitivity of SPIRE photometers on the Herschel Space Observatory. Specifically, we measure the confusion noise from observations taken during the Science Demonstration Phase of the Herschel Multi-tiered Extragalactic Survey. Confusion noise is defined to be the spatial variation of the sky intensity in the limit of infinite integration time, and is found to be consistent among the different fields in our survey at the level of 5.8, 6.3 and 6.8 mJy/beam at 250, 350 and 500 microns, respectively. These results, together with the measured instrument noise, may be used to estimate the integration time required for confusion-limited maps, and provide a noise estimate for maps obtained by SPIRE.


Astronomy and Astrophysics | 2010

HerMES : SPIRE galaxy number counts at 250, 350, and 500 μm

Seb Oliver; L. Wang; A. J. Smith; B. Altieri; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; D. Burgarella; N. Castro-Rodríguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn; Matthew Joseph Griffin

Emission at far-infrared wavelengths makes up a significant fraction of the total light detected from galaxies over the age of Universe. Herschel provides an opportunity for studying galaxies at the peak wavelength of their emission. Our aim is to provide a benchmark for models of galaxy population evolution and to test pre-existing models of galaxies. With the Herschel Multi-tiered Extra-galactic survey, HerMES, we have observed a number of fields of different areas and sensitivity using the SPIRE instrument on Herschel. We have determined the number counts of galaxies down to ~20 mJy. Our constraints from directly counting galaxies are consistent with, though more precise than, estimates from the BLAST fluctuation analysis. We have found a steep rise in the Euclidean normalised counts <100 mJy. We have directly resolved ~15% of the infrared extra-galactic background at the wavelength near where it peaks.


Publications of the Astronomical Society of the Pacific | 2010

The Herschel Reference Survey

A. Boselli; Stephen Anthony Eales; Luca Cortese; G. J. Bendo; P. Chanial; V. Buat; Jonathan Ivor Davies; Robbie Richard Auld; E. Rigby; M. Baes; M. J. Barlow; James J. Bock; M. Bradford; N. Castro-Rodriguez; S. Charlot; D. L. Clements; D. Cormier; E. Dwek; D. Elbaz; M. Galametz; F. Galliano; Walter Kieran Gear; J. Glenn; Haley Louise Gomez; Matthew Joseph Griffin; Sacha Hony; Kate Gudrun Isaak; L. Levenson; N. Lu; S. Madden

The Herschel Reference Survey is a Herschel guaranteed time key project and will be a benchmark study of dust in the nearby universe. The survey will complement a number of other Herschel key projects including large cosmological surveys that trace dust in the distant universe. We will use Herschel to produce images of a statistically-complete sample of 323 galaxies at 250, 350, and 500 μm. The sample is volume-limited, containing sources with distances between 15 and 25 Mpc and flux limits in the K band to minimize the selection effects associated with dust and with young high-mass stars and to introduce a selection in stellar mass. The sample spans the whole range of morphological types (ellipticals to late-type spirals) and environments (from the field to the center of the Virgo Cluster) and as such will be useful for other purposes than our own. We plan to use the survey to investigate (i) the dust content of galaxies as a function of Hubble type, stellar mass, and environment; (ii) the connection between the dust content and composition and the other phases of the interstellar medium; and (iii) the origin and evolution of dust in galaxies. In this article, we describe the goals of the survey, the details of the sample and some of the auxiliary observing programs that we have started to collect complementary data. We also use the available multifrequency data to carry out an analysis of the statistical properties of the sample.


Astronomy and Astrophysics | 2010

HerMES: Far infrared properties of known AGN in the HerMES fields

E. Hatziminaoglou; A. Omont; J. A. Stevens; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Simon Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn

Nuclear and starburst activity are known to often occur concomitantly. Herschel-SPIRE provides sampling of the FIR SEDs of type 1 and type 2 AGN, allowing for the separation between the hot dust (torus) and cold dust (starburst) emission. We study large samples of spectroscopically confirmed type 1 and type 2 AGN lying within the Herschel Multi-tiered Extragalactic Survey (HerMES) fields observed during the science demonstration phase, aiming to understand their FIR colour distributions and constrain their starburst contributions. We find that one third of the spectroscopically confirmed AGN in the HerMES fields have 5-sigma detections at 250um, in agreement with previous (sub)mm AGN studies. Their combined Spitzer-MIPS and Herschel-SPIRE colours - specifically S(250)/S(70) vs. S(70)/S(24) - quite clearly separate them from the non-AGN, star-forming galaxy population, as their 24-um flux is dominated by the hot torus emission. However, their SPIRE colours alone do not differ from those of non-AGN galaxies. SED fitting shows that all those AGN need a starburst component to fully account for their FIR emission. For objects at z > 2, we find a correlation between the infrared luminosity attributed to the starburst component, L(SB), and the AGN accretion luminosity, L(acc), with L(SB) propto L(acc)^0.35. Type 2 AGN detected at 250um show on average higher L(SB) than type 1 objects but their number is still too low to establish whether this trend indicates stronger star-formation activity.


Nature | 2012

The suppression of star formation by powerful active galactic nuclei.

M. J. Page; M. Symeonidis; J. D. Vieira; B. Altieri; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. N. Dubois; James Dunlop; Eli Dwek; Simon Dye; Stephen Anthony Eales; David Elbaz; D. Farrah; M. Fox; A. Franceschini; Walter Kieran Gear

The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2–6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 1044 ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy’s properties in a brief period of cosmic time.


Astronomy and Astrophysics | 2010

The Herschel Space Observatory view of dust in M81

G. J. Bendo; C. D. Wilson; Michael Pohlen; Marc Sauvage; Robbie Richard Auld; M. Baes; M. J. Barlow; J. J. Bock; A. Boselli; M. Bradford; V. Buat; N. Castro-Rodriguez; P. Chanial; S. Charlot; L. Ciesla; D. L. Clements; A. Cooray; D. Cormier; Luca Cortese; Jonathan Ivor Davies; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Galametz; F. Galliano; Walter Kieran Gear; J. Glenn; Haley Louise Gomez; Matthew Joseph Griffin; Sacha Hony

We use Herschel Space Observatory data to place observational constraints on the peak and Rayleigh-Jeans slope of dust emission observed at 70–500 μm in the nearby spiral galaxy M81. We find that the ratios of wave bands between 160 and 500 μm are primarily dependent on radius but that the ratio of 70 to 160 μm emission shows no clear dependence on surface brightness or radius. These results along with analyses of the spectral energy distributions imply that the 160–500 μm emission traces 15–30 K dust heated by evolved stars in the bulge and disc whereas the 70 μm emission includes dust heated by the active galactic nucleus and young stars in star forming regions.


Astronomy and Astrophysics | 2012

HerMES: deep number counts at 250 μm, 350 μm and 500 μm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background

M. Béthermin; E. Le Floc'h; O. Ilbert; A. Conley; G. Lagache; A. Amblard; V. Arumugam; H. Aussel; S. Berta; J. J. Bock; A. Boselli; V. Buat; Caitlin M. Casey; N. Castro-Rodríguez; A. Cava; D. L. Clements; A. Cooray; C. D. Dowell; Stephen Anthony Eales; D. Farrah; A. Franceschini; J. Glenn; Matthew Joseph Griffin; E. Hatziminaoglou; S. Heinis; E. Ibar; R. J. Ivison; J. S. Kartaltepe; L. Levenson; G. Magdis

Aims. The Spectral and Photometric Imaging REceiver (SPIRE) onboard the Herschel space telescope has provided confusion limited maps of deep fields at 250 μm, 350 μm, and 500 μm, as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). Unfortunately, due to confusion, only a small fraction of the cosmic infrared background (CIB) can be resolved into individually-detected sources. Our goal is to produce deep galaxy number counts and redshift distributions below the confusion limit at SPIRE wavelengths (~20 mJy), which we then use to place strong constraints on the origins of the cosmic infrared background and on models of galaxy evolution. Methods. We individually extracted the bright SPIRE sources (>20 mJy) in the COSMOS field with a method using the positions, the flux densities, and the redshifts of the 24 μm sources as a prior, and derived the number counts and redshift distributions of the bright SPIRE sources. For fainter SPIRE sources (<20 mJy), we reconstructed the number counts and the redshift distribution below the confusion limit using the deep 24 μm catalogs associated with photometric redshift and information provided by the stacking of these sources into the deep SPIRE maps of the GOODS-N and COSMOS fields. Finally, by integrating all these counts, we studied the contribution of the galaxies to the CIB as a function of their flux density and redshift. Results. Through stacking, we managed to reconstruct the source counts per redshift slice down to ~2 mJy in the three SPIRE bands, which lies about a factor 10 below the 5σ confusion limit. Our measurements place tight constraints on source population models. None of the pre-existing models are able to reproduce our results at better than 3-σ. Finally, we extrapolate our counts to zero flux density in order to derive an estimate of the total contribution of galaxies to the CIB, finding 10.1_(-2.3)^(+2.6) nW m^(-2) sr^(-1), 6.5_(-1.6)^(+1.7) nW m^(-2) sr^(-1), and 2.8_(-0.8)^(+0.9) nW m^(-2) sr^(-1) at 250 μm, 350 μm, and 500 μm, respectively. These values agree well with FIRAS absolute measurements, suggesting our number counts and their extrapolation are sufficient to explain the CIB. We find that half of the CIB is emitted at z = 1.04, 1.20, and 1.25, respectively. Finally, combining our results with other works, we estimate the energy budget contained in the CIB between 8 μm and 1000 μm: 26_(-3)^(+7) nW m^(-2) sr^(-1).


web science | 2010

The Herschel Multi-Tiered Extragalactic Survey: source extraction and cross-identifications in confusion-dominated SPIRE images

Seb Oliver; Martin Kunz; B. Altieri; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; M. Béthermin; A. W. Blain; James J. Bock; A. Boselli; D. Brisbin; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. Dwek; S. Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox

We present the cross-identification and source photometry techniques used to process Herschel SPIRE imaging taken as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES). Cross-identifications are performed in map-space so as to minimize source-blending effects. We make use of a combination of linear inversion and model selection techniques to produce reliable cross-identification catalogues based on Spitzer MIPS 24-mu m source positions. Testing on simulations and real Herschel observations shows that this approach gives robust results for even the faintest sources (S-250 similar to 10 mJy). We apply our new technique to HerMES SPIRE observations taken as part of the science demonstration phase of Herschel. For our real SPIRE observations, we show that, for bright unconfused sources, our flux density estimates are in good agreement with those produced via more traditional point source detection methods (SUSSEXtractor) by Smith et al. When compared to the measured number density of sources in the SPIRE bands, we show that our method allows the recovery of a larger fraction of faint sources than these traditional methods. However, this completeness is heavily dependent on the relative depth of the existing 24-mu m catalogues and SPIRE imaging. Using our deepest multiwavelength data set in the GOODS-N, we estimate that the use of shallow 24-mu m catalogues in our other fields introduces an incompleteness at faint levels of between 20-40 per cent at 250 mu m.


Monthly Notices of the Royal Astronomical Society | 2010

HerMES: deep galaxy number counts from a P(D) fluctuation analysis of SPIRE Science Demonstration Phase observations

J. Glenn; A. Conley; M. Béthermin; B. Altieri; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; James J. Bock; A. Boselli; V. Buat; N. Castro-Rodríguez; A. Cava; P. Chanial; D. L. Clements; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; T. P. Ellsworth-Bowers; M. Fox; A. Franceschini; Walter Kieran Gear; Matthew Joseph Griffin; M. Halpern; Evanthia Hatziminaoglou; E. Ibar

Dusty, star-forming galaxies contribute to a bright, currently unresolved cosmic far-infrared background. Deep Herschel-Spectral and Photometric Imaging Receiver (SPIRE) images designed to detect and characterize the galaxies that comprise this background are highly confused, such that the bulk lies below the classical confusion limit. We analyse three fields from the Herschel Multi-tiered Extragalactic Survey (HerMES) programme in all three SPIRE bands (250, 350 and 500 μm); parametrized galaxy number count models are derived to a depth of ~2 mJy beam^(−1), approximately four times the depth of previous analyses at these wavelengths, using a probability of deflection [P(D)] approach for comparison to theoretical number count models. Our fits account for 64, 60 and 43 per cent of the far-infrared background in the three bands. The number counts are consistent with those based on individually detected SPIRE sources, but generally inconsistent with most galaxy number count models, which generically overpredict the number of bright galaxies and are not as steep as the P(D)-derived number counts. Clear evidence is found for a break in the slope of the differential number counts at low flux densities. Systematic effects in the P(D) analysis are explored. We find that the effects of clustering have a small impact on the data, and the largest identified systematic error arises from uncertainties in the SPIRE beam.


Nature | 2011

Submillimetre galaxies reside in dark matter haloes with masses greater than 3 × 10 11 solar masses

A. Amblard; A. Cooray; Paolo Serra; B. Altieri; V. Arumugam; H. Aussel; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; David Elbaz; D. Farrah; A. Franceschini; Walter Kieran Gear; J. Glenn; Matthew Joseph Griffin; M. Halpern; E. Hatziminaoglou; E. Ibar; Kate Gudrun Isaak

The extragalactic background light at far-infrared wavelengths comes from optically faint, dusty, star-forming galaxies in the Universe with star formation rates of a few hundred solar masses per year. These faint, submillimetre galaxies are challenging to study individually because of the relatively poor spatial resolution of far-infrared telescopes. Instead, their average properties can be studied using statistics such as the angular power spectrum of the background intensity variations. A previous attempt at measuring this power spectrum resulted in the suggestion that the clustering amplitude is below the level computed with a simple ansatz based on a halo model. Here we report excess clustering over the linear prediction at arcminute angular scales in the power spectrum of brightness fluctuations at 250, 350 and 500 μm. From this excess, we find that submillimetre galaxies are located in dark matter haloes with a minimum mass, Mmin, such that log10[Mmin/M⊙] = at 350 μm, where M⊙ is the solar mass. This minimum dark matter halo mass corresponds to the most efficient mass scale for star formation in the Universe, and is lower than that predicted by semi-analytical models for galaxy formation.

Collaboration


Dive into the L. Levenson's collaboration.

Top Co-Authors

Avatar

A. Cooray

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Glenn

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

P. Chanial

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

J. J. Bock

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

V. Buat

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

N. Castro-Rodriguez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Conley

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

C. D. Dowell

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge