Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Mancini is active.

Publication


Featured researches published by L. Mancini.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Oxytocin is an anabolic bone hormone

Roberto Tamma; Graziana Colaianni; Ling-Ling Zhu; Adriana DiBenedetto; Giovanni Greco; Gabriella Montemurro; Nicola Patano; Maurizio Strippoli; Rosaria Vergari; L. Mancini; Silvia Colucci; Maria Grano; Roberta Faccio; Xuan Liu; Jianhua Li; Sabah Usmani; Marilyn Bachar; Itai Bab; Katsuhiko Nishimori; Larry J. Young; Christoph Buettner; Jameel Iqbal; Li Sun; Mone Zaidi; Alberta Zallone

We report that oxytocin (OT), a primitive neurohypophyseal hormone, hitherto thought solely to modulate lactation and social bonding, is a direct regulator of bone mass. Deletion of OT or the OT receptor (Oxtr) in male or female mice causes osteoporosis resulting from reduced bone formation. Consistent with low bone formation, OT stimulates the differentiation of osteoblasts to a mineralizing phenotype by causing the up-regulation of BMP-2, which in turn controls Schnurri-2 and 3, Osterix, and ATF-4 expression. In contrast, OT has dual effects on the osteoclast. It stimulates osteoclast formation both directly, by activating NF-κB and MAP kinase signaling, and indirectly through the up-regulation of RANK-L. On the other hand, OT inhibits bone resorption by mature osteoclasts by triggering cytosolic Ca2+ release and NO synthesis. Together, the complementary genetic and pharmacologic approaches reveal OT as a novel anabolic regulator of bone mass, with potential implications for osteoporosis therapy.


The FASEB Journal | 2009

Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption

Roberto Tamma; Graziana Colaianni; Claudia Camerino; Adriana Di Benedetto; Giovanni Greco; Maurizio Strippoli; Rosaria Vergari; Antonella Grano; L. Mancini; Giorgio Mori; Silvia Colucci; Maria Grano; Alberta Zallone

During space flight, severe losses of bone mass are observed. Both bone formation and resorption are probably involved, but their relative importance remains unclear. The purpose of this research is to understand the role of osteoclasts and their precursors in microgravity‐induced bone loss. Three experiments on isolated osteoclasts (OCs) and on their precursors, OSTEO, OCLAST, and PITS, were launched in the FOTON‐M3 mission. The OSTEO experiment was conducted for 10 d in microgravity within bioreactors with a perfusion system, where the differentiation of precursors, cultured on a synthetic 3‐dimensional bonelike biomaterial, skelite, toward mature OCs was assessed. In OCLAST and in PITS experiments, differentiated OCs were cultured on devitalized bovine bone slices for 4 d in microgravity. All of the experiments were replicated on ground in the same bioreactors, and OCLAST also had an inflight centrifuge as a control. Gene expression in microgravity, compared with ground controls, demonstrated a severalfold increase in genes involved in osteoclast maturation and activity. Increased bone resorption, proved by an increased amount of collagen telopeptides released VS ground and centrifuge control, was also found. These results indicate for the first time osteoclasts and their precursors as direct targets for microgravity and mechanical forces.— Tamma, R.,Colaianni, G., Camerino, C., Di Benedetto, A., Greco, G., Strippoli, M., Vergari, R., Grano, A., Mancini, L., Mori, G., Colucci, S., Grano, M., Zallone, A. Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J. 23, 2549–2554 (2009)


Acta Neuropathologica | 1986

Microscopical and ultrastructural investigations on the development of the blood-brain barrier in the chick embryo optic tectum

Luisa Roncali; Beatrice Nico; Domenico Ribatti; Bertossi M; L. Mancini

SummaryThe formation of a blood-brain barrier to horseradish peroxidase was microscopically and ultrastructurally investigated in the tectum opticum of the chick during development of the intraneural blood vessel network from the 6th incubation day to hatching, and in adult specimens.Extravasation of the circulating marker, apparently unimpeded during early stages of vasculogenesis, starts to diminish from the 14th incubation day (i.d.) and is prevented after the 18th i.d. The tracer seems to get out of the vessel lumina through the sites of reciprocal contact between adjacent endothelial cells, and the differentiation of tight junctions there hinders the passage of peroxidase particles. The formation of numerous endothelial vacuoles during early vasculogenesis and the setting of the blood-brain barrier are discussed in connection with the mechanisms of transendothelial transport, and respectively, the processes of moulding of the growing endothelia.


Journal of Biological Chemistry | 2012

Bone marrow oxytocin mediates the anabolic action of estrogen on the skeleton

Graziana Colaianni; Li Sun; Adriana Di Benedetto; Roberto Tamma; Ling-Ling Zhu; Jay Cao; Maria Grano; Tony Yuen; Sylvia Colucci; Concetta Cuscito; L. Mancini; Jianhua Li; Katsuhiko Nishimori; Itai Bab; Heon-Jin Lee; Jameel Iqbal; W. Scott Young; Clifford J. Rosen; Alberta Zallone; Mone Zaidi

Background: The mechanism underlying the anabolic effect of estrogen on the skeleton is unclear. Results: We report that estrogen-induced bone formation in mice occurs through oxytocin (OT) produced by osteoblasts in bone marrow. Conclusion: Feed-forward OT release in bone marrow by a rising estrogen level may facilitate rapid skeletal recovery after lactation. Significance: The study highlights a novel mechanism for estrogen action on bone. Estrogen uses two mechanisms to exert its effect on the skeleton: it inhibits bone resorption by osteoclasts and, at higher doses, can stimulate bone formation. Although the antiresorptive action of estrogen arises from the inhibition of the MAPK JNK, the mechanism of its effect on the osteoblast remains unclear. Here, we report that the anabolic action of estrogen in mice occurs, at least in part, through oxytocin (OT) produced by osteoblasts in bone marrow. We show that the absence of OT receptors (OTRs) in OTR−/− osteoblasts or attenuation of OTR expression in silenced cells inhibits estrogen-induced osteoblast differentiation, transcription factor up-regulation, and/or OT production in vitro. In vivo, OTR−/− mice, known to have a bone formation defect, fail to display increases in trabecular bone volume, cortical thickness, and bone formation in response to estrogen. Furthermore, osteoblast-specific Col2.3-Cre+/OTRfl/fl mice, but not TRAP-Cre+/OTRfl/fl mice, mimic the OTR−/− phenotype and also fail to respond to estrogen. These data attribute the phenotype of OTR deficiency to an osteoblastic rather than an osteoclastic defect. Physiologically, feed-forward OT release in bone marrow by a rising estrogen concentration may facilitate rapid skeletal recovery during the latter phases of lactation.


Calcified Tissue International | 2005

L-Carnitine and Isovaleryl L-Carnitine Fumarate Positively Affect Human Osteoblast Proliferation and Differentiation In Vitro

Silvia Colucci; Giorgio Mori; S. Vaira; Giacomina Brunetti; Giovanni Greco; L. Mancini; G. M. Simone; F. Sardelli; A. Koverech; Alberta Zallone; Maria Grano

Age-related bone loss is characterized by decreased osteoblast activity, possibly related to the reduction of energy production. Carnitine promotes energy availability and its concentration declines with age; Therefore, two Carnitine derivatives, L-carnitine fumarate (LC) and isovaleryl L-carnitine fumarate (Iso-V-LC), have been tested on several parameters of human osteoblasts in vitro. Both compounds significantly increased osteoblast activity, but the new compound Iso-V-LC was more efficient than LC at lower concentrations. They both significantly enhanced cell proliferation, [3H]-proline incorporation and the expression of collagen type I (COLLI), and the bone sialoproteins (BSPs) and osteopontin (OPN). The percentage of alkaline phosphatase (ALP)–positive cells and the secretion of osteocalcin were not modified by LC and Iso-V-LC. Both molecules increased the formation of mineralized nodules, but Iso-V-LC reached the maximum effect at a concentration 10-fold lower than that of LC. Furthermore, we showed that insulin-like growth factor (IGF)-I and IGF-II mRNA levels were not modified by the treatment. However, the two compounds induced an increase of insulin-like growth factor binding protein (IGFBP)-3 and a decrease of IGFBP-5 in both osteoblast lysates and the extracellular matrix (ECM). In conclusion these data suggest that carnitine and, in particular, its new derivative, Iso-V-LC supplementation in the elderly may stimulate osteoblast activity and decrease age-related bone loss.


Anatomy and Embryology | 1986

Process of differentiation of cerebellar Purkinje neurons in the chick embryo.

Bertossi M; Luisa Roncali; L. Mancini; Domenico Ribatti; Beatrice Nico

SummaryThe microscopic and ultrastructural differentiation of Purkinje neurons has been studied in 40 chicken embryo cerebella, from the 10th incubation day to hatching, and the transverse diameter of the cell body measured, for each developmental stage, on 30 electron micrographs of sagittally cut Purkinje cells. The developing Purkinje cell bodies, bipolar, at first, given the presence of two processes emerging from the opposite poles of the oval perikaryon, grow progressively in size. After the 12th incubation day, they develop a branched dendritic tree, and, shortly before hatching time, the cells acquire the characteristic flask or pear-shaped configuration. On the 10th incubation day, microtubules are already detectable together with Golgi complexes and a few vesicles of rough endoplasmic reticulum; on the 14th incubation day, RER cisterns are recognizable in the supranuclear cytoplasm, later extending into the whole perikaryon, and attaining their definitive distribution by the 18th incubation day. Pinocytotic and coated vesicles, as well as subsurface cisterns are seen during the whole embryonic life. In the earliest stages of development, three distinct types of junctional contacts between Purkinje cells and surrounding axons are described, and their functional role in relation to synaptogenetic processes is discussed. Beginning with the 16th incubation day, some Purkinje neurons undergo degenerative changes similar to those described in other types of neurons of the central and peripheral nervous system.


Anatomy and Embryology | 1993

Perivascular astrocytes and endothelium in the development of the blood-brain barrier in the optic tectum of the chick embryo

Bertossi M; Luisa Roncali; Beatrice Nico; Domenico Ribatti; L. Mancini; Daniela Virgintino; G. Fabiani; A. Guidazzoli

The role played by perivascular astrocytes in neural vessel maturation was investigated in microvessels of the chick embryo optic tectum. Three-dimensional reconstructions and quantitative analyses were made, and permeability was studied. On embryonic days 14–16, 12.5% of the microvessel wall is surrounded by astrocyte endfeet which, in most cases (82%), are located under endothelium junctions; the latter, at this stage, partly prevent the extravascular escape of the marker horseradish peroxidase. On days 18–21, the astrocyte processes form a nearly complete perivascular sheath enveloping 96% of the microvessel perimeter; the junctions of the endothelial cells are much wider and impermeable owing to extensive fusion of the endothelial plasma membranes. This investigation suggests a close relationship between the perivascular arrangement of glia and differentiation of the endothelium tight junctions and indicates that the morphofunctional maturation of the latter takes place progressively during the prenatal organogenesis of the chick central nervous system.


Calcified Tissue International | 2008

l-Carnitine Fumarate and Isovaleryl-l-Carnitine Fumarate Accelerate the Recovery of Bone Volume/Total Volume Ratio after Experimetally Induced Osteoporosis in Pregnant Mice

Nicola Patano; L. Mancini; M. P. Settanni; Maurizio Strippoli; Giacomina Brunetti; Giovanni Greco; Roberto Tamma; Rosaria Vergari; F. Sardelli; A. Koverech; Silvia Colucci; Alberta Zallone; Maria Grano

Anabolic skeletal agents have recently broadened the therapeutic options for osteoporosis by directly stimulating bone formation and improving bone turnover, bone density, bone size, and bone microarchitecture. We recently demonstrated that two new l-carnitine derivatives, l-carnitine fumarate (LC) and isovaleryl-l-carnitine fumarate (Iso-V-LC), stimulated osteoblast proliferation and differentiation. We here investigated, by histomorphometry in a mouse model of osteoporosis, the impact of these compounds on the repair of trabecular bone and the osteoblast involvement in this process. Fifty-nine inbred adult female CD1 mice in pregnancy were assigned to four treatment groups: (1) controls, mice fed a standard normocalcemic pre- and postpartal diet; (2) Hypo, mice fed a low-calcium isocaloric prepartal diet and a standard postpartal diet; (3) LC, mice fed a group 2-type diet supplemented post-partum with LC; (4) Iso-V-LC, mice fed a group 2-type diet supplemented post-partum with Iso-V-LC. Bone volume/total volume ratio (BV/TV), bone perimeter, osteoblast surface/bone surface, and osteoblast number/bone surface were measured from sections of L3 and L4 vertebral bodies obtained from animals killed on the day of delivery (controls and Hypo) and on days 7, 14, and 21 after delivery (all groups). BV/TV and all osteoblast-based indexes were significantly higher in LC and Iso-V-LC than in Hypo mice at each time point, and Iso-V-LC at the end of the treatment attained levels observed in controls. In conclusion, Iso-V-LC and, to a lesser extent, LC accelerated the recovery of normal BV/TV level after a hypocalcemic diet.


Anatomy and Embryology | 1996

MORPHOLOGICAL ASPECTS OF THE VASCULARIZATION IN INTRAVENTRICULAR NEURAL TRANSPLANTS FROM EMBRYO TO EMBRYO

Luisa Roncali; Daniela Virgintino; Pierre Coltey; Bertossi M; Mariella Errede; Domenico Ribatti; Beatrice Nico; L. Mancini; S. Sorino; Alessandro Riva

Intraventricular transplants of neural tissues were performed in ovo from embryo to embryo. Fragments of the nervous wall of the optic lobe (tectum) from 14-day chick or 12-day quail embryos (donor) were inserted into the ventricle of the right optic lobe of 6-day chick or 5-day quail embryos (host). Chick-to-chick, chick-to-quail and quail-to-chick grafts were carried out. The vascularization changes occurring in the host tectum and in the grafted neural tissues were analysed under light, transmission, and scanning electron microscopes and by morphometric methods. In the host embryo tectum, the neural graft stimulates a statistically significant increment in vessel density and a vessel sprouting into the ventricle of the optic lobe. The vascular sprouts reach the transplanted tissue and establish connections with its native microvasculature. The chick-to-quail and quail-to chick grafts, submitted to immunoreaction with a quailspecific antibody which recognizes an antigen (MB1) present on endothelial cells, indicate that re-establishment of the circulation in the graft depends upon anastomoses between host and donor vasculatures and the rapid new growth of host-derived and donor-native vessels. The presence of macrophage-like cells escorting the new-growing vessels suggests that these cells are involved in the host and donor tissue angiogenesis.


Acta Neuropathologica | 1989

Computerized three-dimensional reconstruction of the developing blood-brain barrier

Bertossi M; Domenico Ribatti; Beatrice Nico; Daniela Virgintino; L. Mancini; Luisa Roncali

SummaryComputer-aided techniques for three-dimensional reconstruction of images were employed in a morphological and morphometrical study of blood-brain barrier (BBB) development in the micro-vasculature of the chick embryo optic tectum. The method proved very useful for understanding the spatial relationships between BBB vascular and perivascular components, and of their modifications during embryonic life. The results indicate that the perivascular astrocytic endfeet, the main periendothelial components of the BBB, appear on the 14th incubation day and form an almost continuous perivascular envelope at hatching time.

Collaboration


Dive into the L. Mancini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge