Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Miguel Martins is active.

Publication


Featured researches published by L. Miguel Martins.


Nature Cell Biology | 2007

The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1

Helene Plun-Favreau; Kristina Klupsch; Nicoleta Moisoi; Sonia Gandhi; Svend Kjær; David Frith; Kirsten Harvey; Emma Deas; Robert J. Harvey; Neil Q. McDonald; Nicholas W. Wood; L. Miguel Martins; Julian Downward

In mice, targeted deletion of the serine protease HtrA2 (also known as Omi) causes mitochondrial dysfunction leading to a neurodegenerative disorder with parkinsonian features. In humans, point mutations in HtrA2 are a susceptibility factor for Parkinsons disease (PARK13 locus). Mutations in PINK1, a putative mitochondrial protein kinase, are associated with the PARK6 autosomal recessive locus for susceptibility to early-onset Parkinsons disease. Here we determine that HtrA2 interacts with PINK1 and that both are components of the same stress-sensing pathway. HtrA2 is phosphorylated on activation of the p38 pathway, occurring in a PINK1-dependent manner at a residue adjacent to a position found mutated in patients with Parkinsons disease. HtrA2 phosphorylation is decreased in brains of patients with Parkinsons disease carrying mutations in PINK1. We suggest that PINK1-dependent phosphorylation of HtrA2 might modulate its proteolytic activity, thereby contributing to an increased resistance of cells to mitochondrial stress.


Molecular and Cellular Biology | 2004

Neuroprotective Role of the Reaper-Related Serine Protease HtrA2/Omi Revealed by Targeted Deletion in Mice

L. Miguel Martins; Alastair D. Morrison; Kristina Klupsch; Valentina Fedele; Nicoleta Moisoi; Peter Teismann; Alejandro Abuin; Evelyn Grau; Martin Geppert; George P. Livi; Caretha L. Creasy; Alison Martin; Iain Hargreaves; Simon Heales; Hitoshi Okada; Sebastian Brandner; Jörg B. Schulz; Tak W. Mak; Julian Downward

ABSTRACT The serine protease HtrA2/Omi is released from the mitochondrial intermembrane space following apoptotic stimuli. Once in the cytosol, HtrA2/Omi has been implicated in promoting cell death by binding to inhibitor of apoptosis proteins (IAPs) via its amino-terminal Reaper-related motif, thus inducing caspase activity, and also in mediating caspase-independent death through its own protease activity. We report here the phenotype of mice entirely lacking expression of HtrA2/Omi due to targeted deletion of its gene, Prss25. These animals, or cells derived from them, show no evidence of reduced rates of cell death but on the contrary suffer loss of a population of neurons in the striatum, resulting in a neurodegenerative disorder with a parkinsonian phenotype that leads to death of the mice around 30 days after birth. The phenotype of these mice suggests that it is the protease function of this protein and not its IAP binding motif that is critical. This conclusion is reinforced by the finding that simultaneous deletion of the other major IAP binding protein, Smac/DIABLO, does not obviously alter the phenotype of HtrA2/Omi knockout mice or cells derived from them. Mammalian HtrA2/Omi is therefore likely to function in vivo in a manner similar to that of its bacterial homologues DegS and DegP, which are involved in protection against cell stress, and not like the proapoptotic Reaper family proteins in Drosophila melanogaster.


Human Molecular Genetics | 2011

PINK1 Cleavage at position A103 by the mitochondrial protease PARL

Emma Deas; Helene Plun-Favreau; Sonia Gandhi; Howard Desmond; Svend Kjær; Samantha H. Y. Loh; Alan E. Renton; Robert J. Harvey; Alexander J. Whitworth; L. Miguel Martins; Andrey Y. Abramov; Nicholas W. Wood

Mutations in PTEN-induced kinase 1 (PINK1) cause early onset autosomal recessive Parkinsons disease (PD). PINK1 is a 63 kDa protein kinase, which exerts a neuroprotective function and is known to localize to mitochondria. Upon entry into the organelle, PINK1 is cleaved to produce a ∼53 kDa protein (ΔN-PINK1). In this paper, we show that PINK1 is cleaved between amino acids Ala-103 and Phe-104 to generate ΔN-PINK1. We demonstrate that a reduced ability to cleave PINK1, and the consequent accumulation of full-length protein, results in mitochondrial abnormalities reminiscent of those observed in PINK1 knockout cells, including disruption of the mitochondrial network and a reduction in mitochondrial mass. Notably, we assessed three N-terminal PD-associated PINK1 mutations located close to the cleavage site and, while these do not prevent PINK1 cleavage, they alter the ratio of full-length to ΔN-PINK1 protein in cells, resulting in an altered mitochondrial phenotype. Finally, we show that PINK1 interacts with the mitochondrial protease presenilin-associated rhomboid-like protein (PARL) and that loss of PARL results in aberrant PINK1 cleavage in mammalian cells. These combined results suggest that PINK1 cleavage is important for basal mitochondrial health and that PARL cleaves PINK1 to produce the ΔN-PINK1 fragment.


PLOS Genetics | 2010

Cancer and Neurodegeneration: Between the Devil and the Deep Blue Sea

Helene Plun-Favreau; Patrick A. Lewis; John Hardy; L. Miguel Martins; Nicholas W. Wood

Cancer and neurodegeneration are often thought of as disease mechanisms at opposite ends of a spectrum; one due to enhanced resistance to cell death and the other due to premature cell death. There is now accumulating evidence to link these two disparate processes. An increasing number of genetic studies add weight to epidemiological evidence suggesting that sufferers of a neurodegenerative disorder have a reduced incidence for most cancers, but an increased risk for other cancers. Many of the genes associated with either cancer and/or neurodegeneration play a central role in cell cycle control, DNA repair, and kinase signalling. However, the links between these two families of diseases remain to be proven. In this review, we discuss recent and sometimes as yet incomplete genetic discoveries that highlight the overlap of molecular pathways implicated in cancer and neurodegeneration.


Cell Death and Disease | 2013

Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson’s disease

A C Costa; Samantha H. Y. Loh; L. Miguel Martins

Mitochondrial dysfunction caused by protein aggregation has been shown to have an important role in neurological diseases, such as Parkinson’s disease (PD). Mitochondria have evolved at least two levels of defence mechanisms that ensure their integrity and the viability of their host cell. First, molecular quality control, through the upregulation of mitochondrial chaperones and proteases, guarantees the clearance of damaged proteins. Second, organellar quality control ensures the clearance of defective mitochondria through their selective autophagy. Studies in Drosophila have highlighted mitochondrial dysfunction linked with the loss of the PTEN-induced putative kinase 1 (PINK1) as a mechanism of PD pathogenesis. The mitochondrial chaperone TNF receptor-associated protein 1 (TRAP1) was recently reported to be a cellular substrate for the PINK1 kinase. Here, we characterise Drosophila Trap1 null mutants and describe the genetic analysis of Trap1 function with Pink1 and parkin. We show that loss of Trap1 results in a decrease in mitochondrial function and increased sensitivity to stress, and that its upregulation in neurons of Pink1 mutant rescues mitochondrial impairment. Additionally, the expression of Trap1 was able to partially rescue mitochondrial impairment in parkin mutant flies; and conversely, expression of parkin rescued mitochondrial impairment in Trap1 mutants. We conclude that Trap1 works downstream of Pink1 and in parallel with parkin in Drosophila, and that enhancing its function may ameliorate mitochondrial dysfunction and rescue neurodegeneration in PD.


Expert Reviews in Molecular Medicine | 2010

Mitochondrial quality control and neurological disease: an emerging connection.

Inês Pimenta de Castro; L. Miguel Martins; Roberta Tufi

The human brain is a highly complex organ with remarkable energy demands. Although it represents only 2% of the total body weight, it accounts for 20% of all oxygen consumption, reflecting its high rate of metabolic activity. Mitochondria have a crucial role in the supply of energy to the brain. Consequently, their deterioration can have important detrimental consequences on the function and plasticity of neurons, and is thought to have a pivotal role in ageing and in the pathogenesis of several neurological disorders. Owing to their inherent physiological functions, mitochondria are subjected to particularly high levels of stress and have evolved specific molecular quality-control mechanisms to maintain the mitochondrial components. Here, we review some of the most recent advances in the understanding of mitochondrial stress-control pathways, with a particular focus on how defects in such pathways might contribute to neurodegenerative disease.


Experimental Cell Research | 2010

Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1.

Nicole Kieper; Kira M. Holmström; Dalila Ciceri; Fabienne C. Fiesel; Hartwig Wolburg; Elena Ziviani; Alexander J. Whitworth; L. Miguel Martins; Philipp J. Kahle; Rejko Krüger

Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinsons and Huntingtons disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.


Molecular Neurobiology | 2011

Mitochondrial quality control and Parkinson's disease: a pathway unfolds.

Inês Castro; L. Miguel Martins; Samantha H. Y. Loh

Recent findings from genetic studies suggest that defective mitochondrial quality control may play an important role in the development of Parkinsons disease (PD). Such defects may result in the impairment of neuronal mitochondria, which leads to both synaptic dysfunction and cell death and results in neurodegeneration. Here, we review state-of-the-art knowledge of how pathways affecting mitochondrial quality control might contribute to PD, with a particular emphasis on the molecular mechanisms employed by PTEN-induced putative kinase 1 (PINK1), HtrA2 and Parkin to regulate mitochondrial quality control.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Inhibition of oxidative metabolism leads to p53 genetic inactivation and transformation in neural stem cells

Stefano Bartesaghi; Vincenzo Graziano; Sara Galavotti; Nick V. Henriquez; Joanne Betts; Jayeta Saxena; Valentina Minieri; Deli A; Anna Karlsson; L. Miguel Martins; Melania Capasso; Pierluigi Nicotera; Sebastian Brandner; Vincenzo De Laurenzi; Paolo Salomoni

Significance Brain cancer is one of the deadliest human tumors and is characterized by several genetic changes leading to impairment of tumor suppressive pathways and oncogene activation. These genetic alterations promote subsequent molecular changes, including modifications of cellular metabolism, which are believed to contribute to cancer pathogenesis. Conversely, the role of metabolic changes in regulation of genomic stability in brain cancer has not been investigated. Our work shows that alterations of mitochondrial metabolism promote genetic loss of the p53 tumor suppressor and transformation via a mechanism involving reactive oxygen species. Overall, our findings suggest a causative link between metabolic alterations and loss of tumor suppressive control in the central nervous system, with implications for our understanding of brain cancer pathogenesis. Alterations of mitochondrial metabolism and genomic instability have been implicated in tumorigenesis in multiple tissues. High-grade glioma (HGG), one of the most lethal human neoplasms, displays genetic modifications of Krebs cycle components as well as electron transport chain (ETC) alterations. Furthermore, the p53 tumor suppressor, which has emerged as a key regulator of mitochondrial respiration at the expense of glycolysis, is genetically inactivated in a large proportion of HGG cases. Therefore, it is becoming evident that genetic modifications can affect cell metabolism in HGG; however, it is currently unclear whether mitochondrial metabolism alterations could vice versa promote genomic instability as a mechanism for neoplastic transformation. Here, we show that, in neural progenitor/stem cells (NPCs), which can act as HGG cell of origin, inhibition of mitochondrial metabolism leads to p53 genetic inactivation. Impairment of respiration via inhibition of complex I or decreased mitochondrial DNA copy number leads to p53 genetic loss and a glycolytic switch. p53 genetic inactivation in ETC-impaired neural stem cells is caused by increased reactive oxygen species and associated oxidative DNA damage. ETC-impaired cells display a marked growth advantage in the presence or absence of oncogenic RAS, and form undifferentiated tumors when transplanted into the mouse brain. Finally, p53 mutations correlated with alterations in ETC subunit composition and activity in primary glioma-initiating neural stem cells. Together, these findings provide previously unidentified insights into the relationship between mitochondria, genomic stability, and tumor suppressive control, with implications for our understanding of brain cancer pathogenesis.


Cell Death and Disease | 2012

HtrA2 deficiency causes mitochondrial uncoupling through the F1F0-ATP synthase and consequent ATP depletion

Helene Plun-Favreau; V.S. Burchell; Kira M. Holmström; Zhi Yao; Emma Deas; K. Cain; Valentina Fedele; Nicoleta Moisoi; M. Campanella; L. Miguel Martins; Nicholas W. Wood; Alexander V. Gourine; Andrey Y. Abramov

Loss of the mitochondrial protease HtrA2 (Omi) in mice leads to mitochondrial dysfunction, neurodegeneration and premature death, but the mechanism underlying this pathology remains unclear. Using primary cultures from wild-type and HtrA2-knockout mice, we find that HtrA2 deficiency significantly reduces mitochondrial membrane potential in a range of cell types. This depolarisation was found to result from mitochondrial uncoupling, as mitochondrial respiration was increased in HtrA2-deficient cells and respiratory control ratio was dramatically reduced. HtrA2-knockout cells exhibit increased proton translocation through the ATP synthase, in combination with decreased ATP production and truncation of the F1 α-subunit, suggesting the ATP synthase as the source of the proton leak. Uncoupling in the HtrA2-deficient mice is accompanied by altered breathing pattern and, on a cellular level, ATP depletion and vulnerability to chemical ischaemia. We propose that this vulnerability may ultimately cause the neurodegeneration observed in these mice.

Collaboration


Dive into the L. Miguel Martins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susann Lehmann

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

A C Costa

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Andrey Y. Abramov

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Emma Deas

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Nicholas W. Wood

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Sonia Gandhi

UCL Institute of Neurology

View shared research outputs
Researchain Logo
Decentralizing Knowledge