Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samantha H. Y. Loh is active.

Publication


Featured researches published by Samantha H. Y. Loh.


Human Molecular Genetics | 2011

PINK1 Cleavage at position A103 by the mitochondrial protease PARL

Emma Deas; Helene Plun-Favreau; Sonia Gandhi; Howard Desmond; Svend Kjær; Samantha H. Y. Loh; Alan E. Renton; Robert J. Harvey; Alexander J. Whitworth; L. Miguel Martins; Andrey Y. Abramov; Nicholas W. Wood

Mutations in PTEN-induced kinase 1 (PINK1) cause early onset autosomal recessive Parkinsons disease (PD). PINK1 is a 63 kDa protein kinase, which exerts a neuroprotective function and is known to localize to mitochondria. Upon entry into the organelle, PINK1 is cleaved to produce a ∼53 kDa protein (ΔN-PINK1). In this paper, we show that PINK1 is cleaved between amino acids Ala-103 and Phe-104 to generate ΔN-PINK1. We demonstrate that a reduced ability to cleave PINK1, and the consequent accumulation of full-length protein, results in mitochondrial abnormalities reminiscent of those observed in PINK1 knockout cells, including disruption of the mitochondrial network and a reduction in mitochondrial mass. Notably, we assessed three N-terminal PD-associated PINK1 mutations located close to the cleavage site and, while these do not prevent PINK1 cleavage, they alter the ratio of full-length to ΔN-PINK1 protein in cells, resulting in an altered mitochondrial phenotype. Finally, we show that PINK1 interacts with the mitochondrial protease presenilin-associated rhomboid-like protein (PARL) and that loss of PARL results in aberrant PINK1 cleavage in mammalian cells. These combined results suggest that PINK1 cleavage is important for basal mitochondrial health and that PARL cleaves PINK1 to produce the ΔN-PINK1 fragment.


Cell Death & Differentiation | 2012

Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster

I Pimenta de Castro; A C Costa; D Lam; Roberta Tufi; V Fedele; Nicoleta Moisoi; David Dinsdale; Emma Deas; Samantha H. Y. Loh; L M Martins

Protein misfolding has a key role in several neurological disorders including Parkinsons disease. Although a clear mechanism for such proteinopathic diseases is well established when aggregated proteins accumulate in the cytosol, cell nucleus, endoplasmic reticulum and extracellular space, little is known about the role of protein aggregation in the mitochondria. Here we show that mutations in both human and fly PINK1 result in higher levels of misfolded components of respiratory complexes and increase in markers of the mitochondrial unfolded protein response. Through the development of a genetic model of mitochondrial protein misfolding employing Drosophila melanogaster, we show that the in vivo accumulation of an unfolded protein in mitochondria results in the activation of AMP-activated protein kinase-dependent autophagy and phenocopies of pink1 and parkin mutants. Parkin expression acts to clear mitochondria with enhanced levels of misfolded proteins by promoting their autophagic degradation in vivo, and refractory to Sigma P (ref(2)P), the Drosophila orthologue of mammalian p62, is a critical downstream effector of this quality control pathway. We show that in flies, a pathway involving pink1, parkin and ref(2)P has a role in the maintenance of a viable pool of cellular mitochondria by promoting organellar quality control.


Cell Death and Disease | 2013

Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson’s disease

A C Costa; Samantha H. Y. Loh; L. Miguel Martins

Mitochondrial dysfunction caused by protein aggregation has been shown to have an important role in neurological diseases, such as Parkinson’s disease (PD). Mitochondria have evolved at least two levels of defence mechanisms that ensure their integrity and the viability of their host cell. First, molecular quality control, through the upregulation of mitochondrial chaperones and proteases, guarantees the clearance of damaged proteins. Second, organellar quality control ensures the clearance of defective mitochondria through their selective autophagy. Studies in Drosophila have highlighted mitochondrial dysfunction linked with the loss of the PTEN-induced putative kinase 1 (PINK1) as a mechanism of PD pathogenesis. The mitochondrial chaperone TNF receptor-associated protein 1 (TRAP1) was recently reported to be a cellular substrate for the PINK1 kinase. Here, we characterise Drosophila Trap1 null mutants and describe the genetic analysis of Trap1 function with Pink1 and parkin. We show that loss of Trap1 results in a decrease in mitochondrial function and increased sensitivity to stress, and that its upregulation in neurons of Pink1 mutant rescues mitochondrial impairment. Additionally, the expression of Trap1 was able to partially rescue mitochondrial impairment in parkin mutant flies; and conversely, expression of parkin rescued mitochondrial impairment in Trap1 mutants. We conclude that Trap1 works downstream of Pink1 and in parallel with parkin in Drosophila, and that enhancing its function may ameliorate mitochondrial dysfunction and rescue neurodegeneration in PD.


Molecular Neurobiology | 2011

Mitochondrial quality control and Parkinson's disease: a pathway unfolds.

Inês Castro; L. Miguel Martins; Samantha H. Y. Loh

Recent findings from genetic studies suggest that defective mitochondrial quality control may play an important role in the development of Parkinsons disease (PD). Such defects may result in the impairment of neuronal mitochondria, which leads to both synaptic dysfunction and cell death and results in neurodegeneration. Here, we review state-of-the-art knowledge of how pathways affecting mitochondrial quality control might contribute to PD, with a particular emphasis on the molecular mechanisms employed by PTEN-induced putative kinase 1 (PINK1), HtrA2 and Parkin to regulate mitochondrial quality control.


Proceedings of the National Academy of Sciences of the United States of America | 2009

MAP4K3 modulates cell death via the post-transcriptional regulation of BH3-only proteins

David Lam; David Dickens; Elizabeth B. Reid; Samantha H. Y. Loh; Nicoleta Moisoi; L. Miguel Martins

Intracellular signal transduction networks involving protein kinases are important modulators of cell survival and cell death in multicellular organisms. Functional compromise of these networks has been linked to aberrant apoptosis in diseases such as cancer. To identify novel kinase regulators of cell death, we conducted an RNAi-based screen to identify modulators of the intrinsic apoptosis pathway. Using this approach, we identified MAP4K3 as a novel apoptosis inducer. Here, we present evidence that this pro-apoptotic kinase orchestrates activation of BAX via the concerted posttranscriptional modulation of PUMA, BAD, and BIM. Additionally, we found decreased levels of this kinase in pancreatic cancer samples, suggesting a tumor suppressor role for MAP4K3 in pancreatic tumorigenesis.


Cell Reports | 2017

Progressive Motor Neuron Pathology and the Role of Astrocytes in a Human Stem Cell Model of VCP-Related ALS

Claire E. Hall; Zhi Yao; Minee Choi; Giulia E. Tyzack; Andrea Serio; Raphaelle Luisier; Jasmine Harley; Elisavet Preza; Charlie Arber; Sarah Crisp; P. Marc D. Watson; Dimitri M. Kullmann; Andrey Y. Abramov; Selina Wray; Russell Burley; Samantha H. Y. Loh; L. Miguel Martins; Molly M. Stevens; Nicholas M. Luscombe; Christopher R. Sibley; Andras Lakatos; Jernej Ule; Sonia Gandhi; Rickie Patani

Summary Motor neurons (MNs) and astrocytes (ACs) are implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but their interaction and the sequence of molecular events leading to MN death remain unresolved. Here, we optimized directed differentiation of induced pluripotent stem cells (iPSCs) into highly enriched (> 85%) functional populations of spinal cord MNs and ACs. We identify significantly increased cytoplasmic TDP-43 and ER stress as primary pathogenic events in patient-specific valosin-containing protein (VCP)-mutant MNs, with secondary mitochondrial dysfunction and oxidative stress. Cumulatively, these cellular stresses result in synaptic pathology and cell death in VCP-mutant MNs. We additionally identify a cell-autonomous VCP-mutant AC survival phenotype, which is not attributable to the same molecular pathology occurring in VCP-mutant MNs. Finally, through iterative co-culture experiments, we uncover non-cell-autonomous effects of VCP-mutant ACs on both control and mutant MNs. This work elucidates molecular events and cellular interplay that could guide future therapeutic strategies in ALS.


Cell Death and Disease | 2016

Parp mutations protect against mitochondrial dysfunction and neurodegeneration in a PARKIN model of Parkinson’s disease

Susann Lehmann; A C Costa; I Celardo; Samantha H. Y. Loh; L M Martins

The co-enzyme nicotinamide adenine dinucleotide (NAD+) is an essential co-factor for cellular energy generation in mitochondria as well as for DNA repair mechanisms in the cell nucleus involving NAD+-consuming poly (ADP-ribose) polymerases (PARPs). Mitochondrial function is compromised in animal models of Parkinson’s disease (PD) associated with PARKIN mutations. Here, we uncovered alterations in NAD+ salvage metabolism in Drosophila parkin mutants. We show that a dietary supplementation with the NAD+ precursor nicotinamide rescues mitochondrial function and is neuroprotective. Further, by mutating Parp in parkin mutants, we show that this increases levels of NAD+ and its salvage metabolites. This also rescues mitochondrial function and suppresses dopaminergic neurodegeneration. We conclude that strategies to enhance NAD+ levels by administration of dietary precursors or the inhibition of NAD+-dependent enzymes, such as PARP, that compete with mitochondria for NAD+ could be used to delay neuronal death associated with mitochondrial dysfunction.


Cell Death and Disease | 2013

Drosophila ref(2)P is required for the parkin -mediated suppression of mitochondrial dysfunction in pink1 mutants

I P de Castro; A C Costa; I Celardo; Roberta Tufi; David Dinsdale; Samantha H. Y. Loh; L M Martins

Autophagy is a critical regulator of organellar homeostasis, particularly of mitochondria. Upon the loss of membrane potential, dysfunctional mitochondria are selectively removed by autophagy through recruitment of the E3 ligase Parkin by the PTEN-induced kinase 1 (PINK1) and subsequent ubiquitination of mitochondrial membrane proteins. Mammalian sequestrome-1 (p62/SQSTM1) is an autophagy adaptor, which has been proposed to shuttle ubiquitinated cargo for autophagic degradation downstream of Parkin. Here, we show that loss of ref(2)P, the Drosophila orthologue of mammalian P62, results in abnormalities, including mitochondrial defects and an accumulation of mitochondrial DNA with heteroplasmic mutations, correlated with locomotor defects. Furthermore, we show that expression of Ref(2)P is able to ameliorate the defects caused by loss of Pink1 and that this depends on the presence of functional Parkin. Finally, we show that both the PB1 and UBA domains of Ref(2)P are crucial for mitochondrial clustering. We conclude that Ref(2)P is a crucial downstream effector of a pathway involving Pink1 and Parkin and is responsible for the maintenance of a viable pool of cellular mitochondria by promoting their aggregation and autophagic clearance.


Cell Death and Disease | 2010

Drosophila happyhour modulates JNK-dependent apoptosis

D Lam; S Shah; I P de Castro; Samantha H. Y. Loh; L M Martins

Mitogen-activated protein kinase kinase kinase kinase-3 (MAP4K3) is a Ste20 kinase family member that modulates multiple signal transduction pathways. We recently identified MAP4K3 as proapoptotic kinase using an RNA interference screening approach. In mammalian cells, MAP4K3 enhances the mitochondrial apoptosis pathway through the post-transcriptional modulation of selected proapoptotic Bcl-2 homology domain 3-only proteins. Recent data suggest that MAP4K3 mutations contribute to pancreatic cancer, which highlights the importance of studying the in vivo function of this kinase. To determine whether the cell death function is conserved in vivo and which downstream signalling pathways are involved, we generated transgenic flies expressing happyhour (hppy), the Drosophila MAP4K3 orthologue. Here, we show that the overexpression of hppy promotes caspase-dependent apoptosis and that the hypothetical kinase domain is essential for inducing cell death. In addition, we show that hppy expression triggers the activation of both the c-Jun N-terminal kinase (JNK) and target of rapamycin (TOR) signalling pathways; however, only JNK signalling is required for apoptosis. Together, our results show that hppy has a JNK-dependent proapoptotic function in Drosophila, which reinforces the hypothesis that MAP4K3 might act as tumour suppressor by regulating apoptosis in higher eukaryotes.


Biology Open | 2017

Enhancing NAD+ salvage metabolism is neuroprotective in a PINK1 model of Parkinson's disease.

Susann Lehmann; Samantha H. Y. Loh; L. Miguel Martins

ABSTRACT Familial forms of Parkinsons disease (PD) caused by mutations in PINK1 are linked to mitochondrial impairment. Defective mitochondria are also found in Drosophila models of PD with pink1 mutations. The co-enzyme nicotinamide adenine dinucleotide (NAD+) is essential for both generating energy in mitochondria and nuclear DNA repair through NAD+-consuming poly(ADP-ribose) polymerases (PARPs). We found alterations in NAD+ salvage metabolism in Drosophila pink1 mutants and showed that a diet supplemented with the NAD+ precursor nicotinamide rescued mitochondrial defects and protected neurons from degeneration. Additionally, a mutation of Parp improved mitochondrial function and was neuroprotective in the pink1 mutants. We conclude that enhancing the availability of NAD+ by either the use of a diet supplemented with NAD+ precursors or the inhibition of NAD+-dependent enzymes, such as PARPs, which compete with mitochondria for NAD+, is a viable approach to preventing neurotoxicity associated with mitochondrial defects. Summary: Dietary supplementation with an NAD+ salvage metabolite or decreasing Parp activity suppress mitochondrial dysfunction and is neuroprotective in a PINK1 model of Parkinsons disease.

Collaboration


Dive into the Samantha H. Y. Loh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A C Costa

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Susann Lehmann

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Andrey Y. Abramov

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma Deas

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberta Tufi

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Sonia Gandhi

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge