L. Narici
University of Rome Tor Vergata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. Narici.
Journal of Physics G | 2001
V. Bidoli; M. Casolino; E. De Grandis; M. P. De Pascale; G. Furano; A. Morselli; L. Narici; P. Picozza; E. Reali; R. Sparvoli; A. M. Galper; A. M. Khodarovich; M. Korotkov; A. V. Popov; N Vavilov; G. Mazzenga; M. Ricci; G. Castellini; S Avdeev; M. Boezio; W. Bonvicini; A. Vacchi; N. Zampa; P. Papini; P. Spillantini; P. Carlson; C. Fuglesang
Cosmic ray measurements performed with the instrument SilEye-2 on the Mir space station are presented. SilEye-2 is a silicon detector telescope used to study the causes of the light flashes perceived by astronauts. As a stand-alone device, it monitors the short- and long-term radiation composition inside Mir. The cosmic ray detector consists of an array of six active silicon strip detectors which allow nuclear identification of cosmic rays up to iron. The device was operational for more than 1000 h in the years 1998–2000, also measuring several solar particle events. In this work we present the in-flight performance of the instrument and nuclear abundance data from boron to silicon above � 150 MeV n −1 inside Mir.
Acta Astronautica | 2002
S Avdeev; V. Bidoli; M. Casolino; E. De Grandis; G. Furano; A. Morselli; L. Narici; M. P. De Pascale; Piergiorgio Picozza; E. Reali; Roberta Sparvoli; M. Boezio; P. Carlson; W. Bonvicini; A. Vacchi; N. Zampa; G. Castellini; C. Fuglesang; A. M. Galper; A. M. Khodarovich; Yu. V. Ozerov; A. V. Popov; N Vavilov; G. Mazzenga; M. Ricci; Walter G. Sannita; P. Spillantini
The phenomenon of light flashes (LF) in eyes for people in space has been investigated onboard Mir. Data on particles hitting the eye have been collected with the SilEye detectors, and correlated with human observations. It is found that a nucleus in the radiation environment of Mir has roughly a 1% probability to cause an LF, whereas the proton probability is almost three orders of magnitude less. As a function of LET, the LF probability increases above 10 keV/micrometer, reaching about 5% at around 50 keV/micrometer.
Brain & Development | 1998
Marco Peresson; Luisa Lopez; L. Narici; Paolo Curatolo
The present study combined functional magnetoencephalography (MEG) and anatomical magnetic resonance imaging (MRI) information in three patients affected by tuberous sclerosis and partial epilepsy. MEG recordings were performed during both spontaneous and visual evoked activity. The former showed a large variety of complexes whose spatial and temporal distribution suggested different neuronal populations acting simultaneously in the same focal district. When these data were integrated with MRI images (magnetic source imaging, MSI) there was agreement in the definition of tubers and extension of the epileptogenic area. Furthermore, cortical reactivity to rhythmical stimulation was studied with trains of visual stimuli according to a recently proposed frequency responsiveness procedure (FRP). As compared to normal controls, a large 6 Hz activity was observed during the pause after a non-resonant stimulation. This altered resonance property may indicate a disturbed primary sensory processing notwithstanding a preserved associated processing. These results show that neuronal malfunctioning in tuberous sclerosis complex patients may not be restricted to the area of cortical tubers, but can also affect functionally correlated regions.
Radiation Research | 2011
L. Di Fino; M. Casolino; C. De Santis; M Larosa; C. La Tessa; L. Narici; P. Picozza; V. Zaconte
The uneven shielding of the International Space Station from the vessel hull, racks and experiments produces a modulation of the internal radiation environment. A detailed knowledge of this environment, and therefore of the Stations shielding effectiveness, is mandatory for an accurate assessment of radiation risk. We present here the first 3D measurements of the Stations radiation environment, discriminating particle trajectories and LET, made possible using the detection capability of the ALTEA-space detector. We provide evidence for a strong (factor ≈ 3) anisotropy in the inner integral LET for high-LET particles (LET > 50 keV/µm) showing a minimum along the longitudinal station axis (most shielded) and a maximum normal to it. Integrating over all measured LETs, the anisotropy is strongly reduced, showing that unstopped light ions plus the fragments produced by heavier ions approximately maintain flux/LET isotropy. This suggests that, while changing the quality of radiation, the extra shielding along the station main axis is not producing a benefit in terms of total LET. These features should be taken into account (1) when measuring radiation with detectors that cannot distinguish the direction of the impinging radiation or that are unidirectional, (2) when planning radiation biology experiments on the ISS, and (3) when simulating the space radiation environment for experiments on the ground. A novel analysis technique that fully exploits the ability to retrieve the angular distribution of the radiation is also presented as well as the angular particle flux and LET characteristic of three geomagnetic zones measured during 2009 by the ALTEA-space detector. This technique is applied to the ALTEA-space detector, but a wider applicability to other detectors is suggested.
Advances in Space Research | 2000
V. Bidoli; M. Casolino; M. P. De Pascale; G. Furano; A. Morselli; L. Narici; Piergiorgio Picozza; E. Reali; R. Sparvoli; Arkady Moiseev Galper; Yu. V. Ozerov; A. V. Popov; N Vavilov; A Alexandrov; S. V. Avdeev; Yu. Baturin; Yu. Budarin; G Padalko; V. Shabelnikov; G. Barbellini; W. Bonvicini; A. Vacchi; N. Zampa; S. Bartalucci; G. Mazzenga; M. Ricci; O. Adriani; P. Spillantini; M. Boezio; P. Carlson
The SilEye experiment aims to study the cause and processes related to the anomalous Light Flashes (LF) perceived by astronauts in orbit and their relation with Cosmic Rays. These observations will be also useful in the study of the long duration manned space flight environment. Two PC-driven silicon detector telescopes have been built and placed aboard Space Station MIR. SilEye-1 was launched in 1995 and provided particles track and LF information; the data gathered indicate a linear dependence of FLF(Hz) ( 4 2) 10(3) 5.3 1.7 10(4) Fpart(Hz) if South Atlantic Anomaly fluxes are not included. Even though higher statistic is required, this is an indication that heavy ion interactions with the eye are the main LF cause. To improve quality and quantity of measurements, a second apparatus, SilEye-2, was placed on MIR in 1997, and started work from August 1998. This instrument provides energetic information, which allows nuclear identification in selected energy ranges; we present preliminary measurements of the radiation field inside MIR performed with SilEye-2 detector in June 1998.
Life sciences in space research | 2016
John W. Norbury; Walter Schimmerling; Tony C. Slaba; Edouard I. Azzam; Francis F. Badavi; G. Baiocco; E.R. Benton; Veronica Bindi; Eleanor A. Blakely; Steve R. Blattnig; David A. Boothman; Thomas B. Borak; Richard A. Britten; Stan Curtis; Michael Dingfelder; Marco Durante; William S. Dynan; Amelia J. Eisch; S. Robin Elgart; Dudley T. Goodhead; Peter Guida; L. Heilbronn; Christine E. Hellweg; Janice L. Huff; Amy Kronenberg; Chiara La Tessa; Derek I. Lowenstein; J. Miller; Takashi Morita; L. Narici
Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation.
Free Radical Biology and Medicine | 2012
L. Narici; Maurizio Paci; V. Brunetti; Alessandra Rinaldi; W.G. Sannita; A. De Martino
Rod outer segments of photoreceptors are characterized by rhodopsin, a membrane protein surrounded by phospholipids containing a very high concentration of polyunsaturated fatty acids. These fatty acids can propagate free radicals, initiated by peroxidation, whose recombination is eventually associated with light emission as chemiluminescence. The results reported here indicate that this effect produces an isomerization of the retinal (bleaching effect) of the rhodopsin, similar to that induced by light in normal vision. In vitro experiments on detergent-suspended rod outer segments (RdOS) from bovine eyes, using an enzymatic source of radicals, xanthine/xanthine oxidase, were carried out. The results indicate that the proposed mechanism is likely, because they can show the bleaching of rhodopsin in RdOS, owing to its extraordinary sensitivity. Thus this mechanism is, also, a possible explanation for anomalous visual effects such as light flashes (phosphene-like) perceived by humans. The functionality of the rhodopsin in the RdOS was first tested by visible light. Rhodopsin reactivation after bleaching was obtained by adding cis-retinal to the suspension, demonstrating the reversibility of the bleaching process. A special experimental system was developed to observe the bleaching from luminescence by radical recombination, avoiding physical contact between the rod outer segment suspension and the radicals to prevent radical-induced damage and modifications of the delicate structure of the rod outer segment.
International Journal of Radiation Biology | 2013
L. Narici; Maurizio Paci; Valentina Brunetti; A Rinaldi; Walter G. Sannita; Simone Carozzo; Angelo DeMartino
Abstract Purpose: In a previous paper, we showed that chemiluminescence from radical recombination (initiated by lipid peroxidation and propagated by polyunsaturated fatty acids [PUFA]) has a bleaching effect comparable to that caused by light on the rhodopsin of retinal rod outer segment (RdOS) prepared from bovine eyes. Photons generated by radical recombination were suggested to be the origin of phosphenes perceived as light flashes by the human eye. Irradiation with 12C carbon ions was used in this study to stimulate radical production, propagation and recombination leading to photoluminescence. Materials and methods: 12C radiation bleached RdOS rhodopsin, but structural damage increasing with the radiation dose was also observed. For this reason, only the effects on rhodopsin at doses producing next to negligible biodamage and permitting regeneration have been considered as bleaching effects. Results: 12C irradiation bleached RdOS rhodopsin, but increasing structural damage with radiation dose was also observed. For the measure of bleaching and to reveal dose response effects on rhodopsin that were able to be regenerated only results from doses producing nearly negligible biodamage have been considered. Conclusions: Recombination of radicals appears responsible for the release of photons with subsequent bleaching of rhodopsin. This effect could have an important role in the generation of the anomalous visual effects (phosphenes) experienced by patients during hadrotherapy or by astronauts in space.
Advances in Space Research | 2003
M. Casolino; V. Bidoli; E. De Grandis; M. P. De Pascale; G. Furano; A. Morselli; L. Narici; P. Picozza; E. Reali; R. Sparvoli; A. M. Galper; M. Korotkov; Yu. V. Ozerov; A. V. Popov; G. Mazzenga; M. Ricci; G. Castellini; S Avdeev; M. Boezio; W. Bonvicini; A. Vacchi; N. Zampa; P. Spillantini; P. Carlson; C. Fuglesang
In this work we present preliminary results of nuclear composition measurements on board space station MIR obtained with SILEYE-2 particle telescope. SILEYE-2 was placed on MIR in 1997 and has been working since then. It consists of an array of 6 active silicon strip detectors which allow nuclear and energetic identification of cosmic rays in the energy range between approximately 30 and 200 MeV/n. The device is attached to an helmet and connected to an eye mask which shields the cosmonaut eyes from light and allow studies of the Light Flashes (LF) phenomenon. In addition to the study of the causes of LF, the device is used to perform real time long term radiation environment monitoring inside the MIR, performing measurements in solar quiet and active days.
Journal of The Electrochemical Society | 2001
Paola Romagnoli; Maria Luisa Di Vona; L. Narici; Walter G. Sannita; Enrico Traversa; Silvia Licoccia
Under the framework of the project Anomalous Long Term Effects in Astronauts, an experiment to study the risk for functional brain anomalies due to cosmic radiation during long manned missions, a new gel-type polymer electrolyte membrane for recording bioelectric signals in space has been developed. Ionic conducting gels have been formed by immobilizing liquid solutions, containing LiX salts (X 5 ClO4 ,C F 3SO3) dissolved in 1,2-diethoxyethane ~gly!, using poly~methyl methacrylate !~ PMMA! as the polymeric matrix. The electrical properties of these membranes have been studied using impedance spectroscopy. The membranes exhibit good mechanical and chemical stability and high conductivity at room temperature (10 23 to 10