Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Paul Steele is active.

Publication


Featured researches published by L. Paul Steele.


Nature Geoscience | 2013

Three decades of global methane sources and sinks

Stefanie Kirschke; P. Bousquet; Philippe Ciais; Marielle Saunois; Josep G. Canadell; E. J. Dlugokencky; P. Bergamaschi; D. Bergmann; D. R. Blake; Lori Bruhwiler; Philip Cameron-Smith; Simona Castaldi; F. Chevallier; Liang Feng; A. Fraser; Martin Heimann; E. L. Hodson; Sander Houweling; B. Josse; P. J. Fraser; P. B. Krummel; Jean-Francois Lamarque; R. L. Langenfelds; Corinne Le Quéré; Vaishali Naik; Simon O'Doherty; Paul I. Palmer; I. Pison; David A. Plummer; Benjamin Poulter

Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios-which differ in fossil fuel and microbial emissions-to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain.


Science | 2007

Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2

Britton B. Stephens; Kevin Robert Gurney; Pieter P. Tans; Colm Sweeney; Wouter Peters; Lori Bruhwiler; Philippe Ciais; Michel Ramonet; P. Bousquet; Takakiyo Nakazawa; Shuji Aoki; Toshinobu Machida; Gen Inoue; Nikolay Vinnichenko; Jon Lloyd; Armin Jordan; Martin Heimann; Olga Shibistova; R. L. Langenfelds; L. Paul Steele; R. J. Francey; A. Scott Denning

Measurements of midday vertical atmospheric CO2 distributions reveal annual-mean vertical CO2 gradients that are inconsistent with atmospheric models that estimate a large transfer of terrestrial carbon from tropical to northern latitudes. The three models that most closely reproduce the observed annual-mean vertical CO2 gradients estimate weaker northern uptake of –1.5 petagrams of carbon per year (Pg C year–1) and weaker tropical emission of +0.1 Pg C year–1 compared with previous consensus estimates of –2.4 and +1.8 Pg C year–1, respectively. This suggests that northern terrestrial uptake of industrial CO2 emissions plays a smaller role than previously thought and that, after subtracting land-use emissions, tropical ecosystems may currently be strong sinks for CO2.


Tellus B | 2010

Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2.

Ingeborg Levin; Tobias Naegler; Bernd Kromer; Moritz Diehl; R. J. Francey; Angel J. Gomez-Pelaez; L. Paul Steele; Dietmar Wagenbach; Rolf Weller; Douglas E. J. Worthy

Global high-precision atmospheric Δ14CO2 records covering the last two decades are presented, and evaluated in terms of changing (radio)carbon sources and sinks, using the coarse-grid carbon cycle model GRACE. Dedicated simulations of global trends and interhemispheric differences with respect to atmospheric CO2 as well as δ13CO2 and Δ14CO2, are shown to be in good agreement with the available observations (1940–2008). While until the 1990s the decreasing trend of Δ14CO2 was governed by equilibration of the atmospheric bomb 14C perturbation with the oceans and terrestrial biosphere, the largest perturbation today are emissions of 14C-free fossil fuel CO2. This source presently depletes global atmospheric Δ14CO2 by 12–14‰ yr−1, which is partially compensated by 14CO2 release from the biosphere, industrial 14C emissions and natural 14C production. Fossil fuel emissions also drive the changing north–south gradient, showing lower Δ14C in the northern hemisphere only since 2002. The fossil fuel-induced north–south (and also troposphere–stratosphere) Δ14CO2 gradient today also drives the tropospheric Δ14CO2 seasonality through variations of air mass exchange between these atmospheric compartments. Neither the observed temporal trend nor the Δ14CO2 north–south gradient may constrain global fossil fuel CO2 emissions to better than 25%, due to large uncertainties in other components of the (radio)carbon cycle.


Atmospheric Environment | 1996

Sulfur hexafluoride—A powerful new atmospheric tracer

Manfred Maiss; L. Paul Steele; R. J. Francey; P. J. Fraser; R. L. Langenfelds; Neil B. A. Trivett; Ingeborg Levin

Long-term observations of the atmospheric trace gas sulfur hexafluoride (SF6) at four background monitoring stations, Neumayer, Antarctica (1986–1994), Cape Grim, Tasmania (1978–1994), Izafna, Canary Islands (1991–1994) and Alert, Canada (1993–1994) are presented. These data sets are supplemented by two meridional profiles collected over the Atlantic Ocean (1990 and 1993) and occasional observations at the regional site Fraserdale, Canada (1994). The analytical system and the method of SF6 calibration are described. Compared with data from Neumayer and Izafia reported earlier, measurements are updated for all sites until the end of 1994 and the precision has improved by more than a factor of 2. With the Cape Grim archived air samples, the atmospheric SF6 chronology is extended by 8 more years back to 1978. For the period from January 1978 to December 1994 the data confirm a stable and unbroken quadratic rise in tropospheric SF6 from 0.50 to 3.11 ppt in the southern hemisphere and for July 1991 to December 1994 from 2.69 to 3.44 ppt in the northern hemisphere. The global mean tropospheric increase rate in late 1994 was 0.225 ppt yr−1 (6.9% yr−1). The long term trend and interhemispheric gradients are due to industrial production and emission, rising approximately linearly with time and located predominantly (94%) in the northern hemisphere. The interhemispheric exchange time (1.7 ± 0.2 yr) derived from SF6 ground level observations when using a two-box model of the atmosphere is considerably larger if compared to the exchange time derived from two- and three-dimensional models (1.1 yr). The chemical and biological inertness of SF6 up to stratospheric conditions results in an atmospheric lifetime of more than 800 years and makes SF6 a powerful tool for modelling transport processes in the atmosphere. Moreover, the tropospheric SF6 chronology is a very valuable input function for mixing studies in linked compartments like the stratosphere, the hydrosphere and the cryosphere.


Journal of Geophysical Research | 1991

The development and evaluation of a gravimetric reference scale for measurements of atmospheric carbon monoxide

Paul C. Novelli; J. W. Elkins; L. Paul Steele

We have prepared a set of 17 carbon monoxide (CO) reference mixtures for use in the calibration of measurements of atmospheric concentrations of this gas. The mixing ratios of these standards range from 25 to 1003 ppb (parts per billion by mole fraction) in zero natural air and are contained in 5.9-L, high-pressure aluminum cylinders. Carbon monoxide was measured using gas chromatography with a mercuric oxide detector. The concentration range of the standards is sufficient to cover that of the background troposphere and also that found in remote locations affected by anthropogenic activities. The low concentration standards were prepared by gravimetric methods using one of three high concentration standards as the parent. Two of the parents were prepared by gravimetric methods starting from high-purity (99.97%) CO to have concentrations of about 250 ppm (parts per million) CO. A total of 14 atmospheric level primary standards were prepared from these two parents. The third parent was a NIST SRM (National Institute of Standards and Technology, Standard Reference Material) having 9.7 ppm CO, from which three standards were prepared. Monitoring of CO levels in the primary standards, relative to natural air contained in 29.5-L high-pressure aluminum cylinders, suggests that the CO content of some primaries may be increasing at rates of between 1 and 2 ppb yr−1. The CO concentration scale defined by the gravimetric standards was used to calibrate a set of 10 secondary standards. The secondary standards are all contained in 29.5-L high-pressure aluminum cylinders and range in concentration from 35 to 200 ppb. Examination of the CO content in several of the oldest secondary standards indicates their CO concentrations have not changed relative to each other over the 2 years they have been studied. Comparison of the low concentration standards derived from the gravimetric parents to those prepared from the NIST SRM show no difference to within 1% between the two scales. We also compared our standards to commercially available, NIST-traceable, CO standards (approximately 0.5 and 1 ppm of CO in air). The concentrations assigned these standards by the manufacturer agreed to within 3% of concentrations we calculated referenced to our standard scale. In addition, we compared our concentration scale to a CO standard used at the Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia. Intercomparison of a cylinder of natural air between our laboratory and CSIRO (which used a CO reference gas traceable to the standards of the Oregon Graduate Institute for Science and Technology, formerly the Oregon Graduate Center) indicated that the CO concentration determined for this air based upon our reference scale was approximately 25% greater than the concentration determined by CSIRO. Carbon monoxide concentrations determined in flask samples collected at Mauna Loa, Hawaii, referenced to this concentration scale, are compared to the earlier reports of CO levels at this location by Seiler et al. [1976] and Khalil and Rasmussen [1988].


Journal of Geophysical Research | 1995

Atmospheric methane at Mauna Loa and Barrow observatories: Presentation and analysis of in situ measurements

E. J. Dlugokencky; L. Paul Steele; Patricia M. Lang; Kenneth A. Masarie

In situ methane (CH4) measurement techniques and data from the NOAA Climate Monitoring and Diagnostics Laboratory observatories at Mauna Loa, Hawaii, and Barrow, Alaska, are presented. For Mauna Loa, the data span the time period April 1987 to April 1994. At Barrow the measurements cover the period January 1986 to January 1994. Sixty air samples per day were measured with a fully automated gas chromatograph using flame ionization detection. Details of the experimental methods and procedures are given. Data are presented and assessed over various timescales. The average peak to peak seasonal cycle amplitudes obtained from four harmonics fitted to the detrended data were 25.1 ppb at Mauna Loa and 47.2 ppb at Barrow. When the seasonal cycle amplitude during each calendar year was determined as the difference between the maximum and minimum value from a smooth curve fitted to the data, the average amplitudes were (30.6±4.2) ppb at Mauna Loa and (57.5±11.4) ppb at Barrow. A discrepancy exists between these two methods due to the temporal variability in the positions of the seasonal maxima. The average trend at Mauna Loa was 9.7 ppb yr−1, but this trend was observed to decrease at a rate of 1.5 ppb yr−2. For Barrow the average trend was 8.5 ppb yr−1, and the rate of decrease in the trend was 2.1 ppb yr−2. At Mauna Loa, a diurnal cycle was sometimes observed with an amplitude of up to 10 ppb when averaged over 1 month.


Journal of Geophysical Research | 1992

Variations in atmospheric methane at Mauna Loa Observatory related to long-range transport

Joyce M. Harris; Pieter P. Tans; E. J. Dlugokencky; Kenneth A. Masarie; Patricia M. Lang; Stewart Whittlestone; L. Paul Steele

Methane measurements, radon measurements, and air mass trajectories calculated for Mauna Loa Observatory (MLO) are examined to determine relationships among methane source/sink regions, flow patterns for MLO, and methane variations on the synoptic-to-seasonal scale. We present evidence that the methane seasonal cycle observed at MLO is in large part driven by seasonal variations in transport. Furthermore, the variability in methane mixing ratio at MLO is higher in winter than in summer because of greater variability in flow patterns. Ten-day back trajectories are classified according to wind speed and direction using cluster analysis to determine six typical transport regimes. The methane data are then grouped according to transport cluster. The median methane mixing ratio corresponding to tradewind flow was 17.2 ppbv (parts per billion by volume) lower than that corresponding to strong westerly flow. This difference is attributed to transport from source/sink regions, flow across the methane latitudinal gradient, and seasonality of flow patterns. Case studies utilizing individual trajectories and radon measurements to determine probable air parcel origins illustrate the effects of long-range transport on the methane mixing ratio at MLO. Changes in flow pattern from sink to source origins can result in a 50 ppbv rise in methane mixing ratio over a period of a few days. During winter, alternation of westerly winds, tradewinds and anticyclonically curving flows contributes to the large variability in the methane mixing ratio. During summer this variability is reduced with the cessation of strong westerly flows from methane source regions. In July and August, air parcels originate far from methane source regions and in the area of highest modeled OH concentration. At the same time, methane mixing ratios decrease to the lowest values for the year. In this way, the seasonality of flow patterns exerts a major influence on the observed seasonal cycle of methane at MLO.


Journal of Geophysical Research | 1999

Space shuttle based global CO measurements during April and October 1994, MAPS instrument, data reduction, and data validation

Henry G. Reichle; Bruce E. Anderson; Vickie S. Connors; Todd C. Denkins; David A. Forbes; Barbara B. Gormsen; R. L. Langenfelds; Doreen O. Neil; Scott R. Nolf; Paul C. Novelli; Nikita S. Pougatchev; Marilee M. Roell; L. Paul Steele

The Measurement of Air Pollution From Satellites (MAPS) experiment flew as a payload aboard the space shuttle during April and October 1994. The instrument and the data reduction procedure were modified from earlier flights in 1981 and 1984. The modifications to both are described, and selected portions of the data are compared to concurrent aircraft borne direct measurements that had been carefully intercalibrated. In addition, the data acquired in 1984 were reprocessed using the new data reduction procedure, and the reprocessed data were compared to aircraft data acquired in 1984. The results of these comparisons indicate that the large bias error in the 1984 MAPS data has been reduced to about 10%.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Role of atmospheric oxidation in recent methane growth

Matthew Rigby; Stephen A. Montzka; Ronald G. Prinn; James W. C. White; Dickon Young; S. O’Doherty; Mark F. Lunt; Anita L. Ganesan; Alistair J. Manning; Peter G. Simmonds; P. K. Salameh; Christina M. Harth; Jens Mühle; Ray F. Weiss; P. J. Fraser; L. Paul Steele; P. B. Krummel; A. McCulloch; Sunyoung Park

Significance Methane, the second most important greenhouse gas, has varied markedly in its atmospheric growth rate. The cause of these fluctuations remains poorly understood. Recent efforts to determine the drivers of the pause in growth in 1999 and renewed growth from 2007 onward have focused primarily on changes in sources alone. Here, we show that changes in the major methane sink, the hydroxyl radical, have likely played a substantial role in the global methane growth rate. This work has significant implications for our understanding of the methane budget, which is important if we are to better predict future changes in this potent greenhouse gas and effectively mitigate enhanced radiative forcing caused by anthropogenic emissions. The growth in global methane (CH4) concentration, which had been ongoing since the industrial revolution, stalled around the year 2000 before resuming globally in 2007. We evaluate the role of the hydroxyl radical (OH), the major CH4 sink, in the recent CH4 growth. We also examine the influence of systematic uncertainties in OH concentrations on CH4 emissions inferred from atmospheric observations. We use observations of 1,1,1-trichloroethane (CH3CCl3), which is lost primarily through reaction with OH, to estimate OH levels as well as CH3CC3 emissions, which have uncertainty that previously limited the accuracy of OH estimates. We find a 64–70% probability that a decline in OH has contributed to the post-2007 methane rise. Our median solution suggests that CH4 emissions increased relatively steadily during the late 1990s and early 2000s, after which growth was more modest. This solution obviates the need for a sudden statistically significant change in total CH4 emissions around the year 2007 to explain the atmospheric observations and can explain some of the decline in the atmospheric 13CH4/12CH4 ratio and the recent growth in C2H6. Our approach indicates that significant OH-related uncertainties in the CH4 budget remain, and we find that it is not possible to implicate, with a high degree of confidence, rapid global CH4 emissions changes as the primary driver of recent trends when our inferred OH trends and these uncertainties are considered.


Journal of Geophysical Research | 1992

Carbon monoxide and methane in the North American Arctic and Subarctic troposphere: July–August 1988

Robert C. Harriss; Glen W. Sachse; Gerald F. Hill; Larry O. Wade; Karen B. Bartlett; J. E. Collins; L. Paul Steele; Paul C. Novelli

Measurements of carbon monoxide (CO) and methane (CH4) were made in the North American Arctic during July–August 1988. The distribution of CH4 was variable in the atmospheric mixed layer (0–2 km), with concentrations determined primarily by interactions of biogenic emissions from wet tundra and turbulent mixing processes. Carbon monoxide exhibited little variation in unpolluted mixed layer environments indicating a minor role for biogenic sources and/or sinks in determining its distribution. In the free troposphere (2–6 km) both CO and CH4 were variable. Concentration gradients were most frequently associated with intrusions of upper tropospheric or stratospheric air into the midtroposphere, emissions from forest and tundra fires, and long-range transport of enhanced concentrations of these gases from unidentified sources. Summertime haze layers exhibited midtropospheric enhancements of CH4 similar to those measured in winter Arctic haze events. However, these summer pollution episodes did not exhibit positive correlations with particulate sulfate. The summer Arctic and subarctic haze events observed during the Arctic Boundary Layer Expedition (ABLE 3) were primarily a result of forest and tundra fires of natural origin. The tendency for relatively high variability of CO and CH4 at altitudes of 3–6 km indicates that ground-based monitoring will not provide an adequate assessment of the chemical composition of the Arctic troposphere to support future global change studies.

Collaboration


Dive into the L. Paul Steele's collaboration.

Top Co-Authors

Avatar

P. B. Krummel

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

P. J. Fraser

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

R. L. Langenfelds

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Jens Mühle

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Reimann

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ray F. Weiss

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge