Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maureen M. Barr is active.

Publication


Featured researches published by Maureen M. Barr.


Nature | 1999

A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans

Maureen M. Barr; Paul W. Sternberg

The stereotyped mating behaviour of the Caenorhabditis elegans male is made up of several substeps: response, backing, turning, vulva location, spicule insertion and sperm transfer. The complexity of this behaviour is reflected in the sexually dimorphic anatomy and nervous system. Behavioural functions have been assigned to most of the male-specific sensory neurons by means of cell ablations; for example, the hook sensory neurons HOA and HOB are specifically required for vulva location. We have investigated how sensory perception of the hermaphrodite by the C. elegans male controls mating behaviours. Here we identify a gene, lov-1 (for location of vulva), that is required for two male sensory behaviours: response and vulva location. lov-1 encodes a putative membrane protein with a mucin-like, serine–threonine-rich amino terminus followed by two blocks of homology to human polycystins, products of the autosomal dominant polycystic kidney-disease loci PKD1 and PKD2 (ref 4). LOV-1 is the closest C. elegans homologue of PKD1. lov-1 is expressed in adult males in sensory neurons of the rays, hook and head, which mediate response, vulva location, and potentially chemotaxis to hermaphrodites, respectively. PKD-2, the C. elegans homologue of PKD2, is localized to the same neurons as LOV-1, suggesting that they function in the same pathway.


Current Biology | 2001

The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway

Maureen M. Barr; Douglas Braun; Can Q. Nguyen; David H. Hall; Paul W. Sternberg

Autosomal dominant polycystic kidney disease (ADPKD) strikes 1 in 1000 individuals and often results in end-stage renal failure. Mutations in either PKD1 or PKD2 account for 95% of all cases [1-3]. It has recently been demonstrated that polycystin-1 and polycystin-2 (encoded by PKD1 and PKD2, respectively) assemble to form a cation channel in vitro [4]. Here we determine that the Caenorhabditis elegans PKD1 and PKD2 homologs, lov-1 [5] and pkd-2, act in the same pathway in vivo. Mutations in either lov-1 or pkd-2 result in identical male sensory behavioral defects. Also, pkd-2;lov-1 double mutants are no more severe than either of the single mutants, indicating that lov-1 and pkd-2 act together. LOV-1::GFP and PKD-2::GFP are expressed in the same male-specific sensory neurons and are concentrated in cilia and cell bodies. Cytoplasmic, nonnuclear staining in cell bodies is punctate, suggesting that one pool of PKD-2 is localized to intracellular membranes while another is found in sensory cilia. In contrast to defects in the C. elegans autosomal recessive PKD gene osm-5 [6-8], the cilia of lov-1 and pkd-2 single mutants and of lov-1;pkd-2 double mutants are normal as judged by electron microscopy, demonstrating that lov-1 and pkd-2 are not required for ultrastructural development of male-specific sensory cilia.


Current Biology | 2001

An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons

Hongmin Qin; Joel L. Rosenbaum; Maureen M. Barr

In this report, we show that the Caenorhabditis elegans gene osm-5 is homologous to the Chlamydomonas gene IFT88 and the mouse autosomal recessive polycystic kidney disease (ARPKD) gene, Tg737. The function of this ARPKD gene may be evolutionarily conserved: mutations result in defective ciliogenesis in worms [1], algae [2], and mice [2, 3]. Intraflagellar transport (IFT) is essential for the development and maintenance of motile and sensory cilia [4]. The biochemically isolated IFT particle from Chlamydomonas flagella is composed of 16 polypeptides in one of two Complexes (A and B) [5, 6] whose movement is powered by kinesin II (anterograde) and cytoplasmic dynein (retrograde) [7-9]. We demonstrate that OSM-5 (a Complex B polypeptide), DAF-10 and CHE-11 (two Complex A polypeptides), and CHE-2 [10], a previously uncategorized IFT polypeptide, all move at the same rate in C. elegans sensory cilia. In the absence of osm-5, the C. elegans autosomal dominant PKD (ADPKD) gene products [11] accumulate in stunted cilia, suggesting that abnormal or lack of cilia or defects in IFT may result in diseases such as polycystic kidney disease (PKD).


Current Biology | 2005

Intraflagellar Transport Is Required for the Vectorial Movement of TRPV Channels in the Ciliary Membrane

Hongmin Qin; Dylan T. Burnette; Young-Kyung Bae; Paul Forscher; Maureen M. Barr; Joel L. Rosenbaum

The membranes of all eukaryotic motile (9 + 2) and immotile primary (9 + 0) cilia harbor channels and receptors involved in sensory transduction (reviewed by). These membrane proteins are transported from the cytoplasm onto the ciliary membrane by vesicles targeted for exocytosis at a point adjacent to the ciliary basal body. Here, we use time-lapse fluorescence microscopy to demonstrate that select GFP-tagged sensory receptors undergo rapid vectorial transport along the entire length of the cilia of Caenorhabditis elegans sensory neurons. Transient receptor potential vanilloid (TRPV) channels OSM-9 and OCR-2 move in ciliary membranes at rates comparable to the intraflagellar transport (IFT) machinery located between the membrane and the underlying axonemal microtubules. OSM-9 motility is disrupted in certain IFT mutant backgrounds. Surprisingly, motility of transient receptor potential polycystin (TRPP) channel PKD-2 (polycystic kidney disease-2), a mechano-receptor, was not detected. Our study demonstrates that IFT, previously shown to be necessary for transport of axonemal components, is also involved in the motility of TRPV membrane protein movement along cilia of C. elegans sensory cells.


Current Biology | 2005

The KLP-6 Kinesin Is Required for Male Mating Behaviors and Polycystin Localization in Caenorhabditis elegans

Erik M. Peden; Maureen M. Barr

BACKGROUND Male mating behavior of the nematode Caenorhabditis elegans offers an intriguing model to study the genetics of sensory behavior, cilia function, and autosomal dominant polycystic kidney disease (ADPKD). The C. elegans polycystins LOV-1 and PKD-2 act in male-specific sensory cilia required for response and vulva-location mating behaviors. RESULTS Here, we identify and characterize a new mating mutant, sy511. sy511 behavioral phenotypes were mapped to a mutation in the klp-6 locus, a gene encoding a member of the kinesin-3 family (previously known as the UNC-104/Kif1A family). KLP-6 has a single homolog of unknown function in vertebrate genomes, including fish, chicken, mouse, rat, and human. We show that KLP-6 expresses exclusively in sensory neurons with exposed ciliated endings and colocalizes with the polycystins in cilia of male-specific neurons. Cilia of klp-6 mutants appear normal, suggesting a defect in sensory neuron function but not development. KLP-6 structure-function analysis reveals that the putative cargo binding domain directs the motor to cilia. Consistent with a motor-cargo association between KLP-6 and the polycystins, klp-6 is required for PKD-2 localization and function within cilia. Genetically, we find klp-6 regulates behavior through polycystin-dependent and -independent pathways. CONCLUSION Multiple ciliary transport pathways dependent on kinesin-II, OSM-3, and KLP-6 may act sequentially to build cilia and localize sensory ciliary membrane proteins such as the polycystins. We propose that KLP-6 and the polycystins function as an evolutionarily conserved ciliary unit. KLP-6 promises new routes to understanding cilia function, behavior, and ADPKD.


The Journal of Neuroscience | 2014

Emerging Roles of Extracellular Vesicles in the Nervous System

Lawrence Rajendran; Bali J; Maureen M. Barr; Felipe A. Court; Eva-Maria Krämer-Albers; Picou F; Graça Raposo; van der Vos Ke; van Niel G; Jianfeng Wang; Xandra O. Breakefield

Information exchange executed by extracellular vesicles, including exosomes, is a newly described form of intercellular communication important in the development and physiology of neural systems. These vesicles can be released from cells, are packed with information including signaling proteins and both coding and regulatory RNAs, and can be taken up by target cells, thereby facilitating the transfer of multilevel information. Recent studies demonstrate their critical role in physiological processes, including nerve regeneration, synaptic function, and behavior. These vesicles also have a sinister role in the propagation of toxic amyloid proteins in neurodegenerative conditions, including prion diseases and Alzheimers and Parkinsons diseases, in inducing neuroinflammation by exchange of information between the neurons and glia, as well as in aiding tumor progression in the brain by subversion of normal cells. This article provides a summary of topics covered in a symposium and is not meant to be a comprehensive review of the subject.


Journal of Cell Biology | 2008

The Caenorhabditis elegans nephrocystins act as global modifiers of cilium structure.

Andrew R. Jauregui; Ken C.Q. Nguyen; David H. Hall; Maureen M. Barr

Nephronophthisis (NPHP) is the most common genetic cause of end-stage renal disease in children and young adults. In Chlamydomonas reinhardtii, Caenorhabditis elegans, and mammals, the NPHP1 and NPHP4 gene products nephrocystin-1 and nephrocystin-4 localize to basal bodies or ciliary transition zones (TZs), but their function in this location remains unknown. We show here that loss of C. elegans NPHP-1 and NPHP-4 from TZs is tolerated in developing cilia but causes changes in localization of specific ciliary components and a broad range of subtle axonemal ultrastructural defects. In amphid channel cilia, nphp-4 mutations cause B tubule defects that further disrupt intraflagellar transport (IFT). We propose that NPHP-1 and NPHP-4 act globally at the TZ to regulate ciliary access of the IFT machinery, axonemal structural components, and signaling molecules, and that perturbing this balance results in cell type–specific phenotypes.


Development | 2006

General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia.

Young Kyung Bae; Hongmin Qin; Karla M. Knobel; Jinghua Hu; Joel L. Rosenbaum; Maureen M. Barr

Ciliary localization of the transient receptor potential polycystin 2 channel (TRPP2/PKD-2) is evolutionarily conserved, but how TRPP2 is targeted to cilia is not known. In this study, we characterize the motility and localization of PKD-2, a TRPP2 homolog, in C. elegans sensory neurons. We demonstrate that GFP-tagged PKD-2 moves bidirectionally in the dendritic compartment. Furthermore, we show a requirement for different molecules in regulating the ciliary localization of PKD-2. PKD-2 is directed to moving dendritic particles by the UNC-101/adaptor protein 1 (AP-1) complex. When expressed in non-native neurons, PKD-2 remains in cell bodies and is not observed in dendrites or cilia, indicating that cell-type specific factors are required for directing PKD-2 to the dendrite. PKD-2 stabilization in cilia and cell bodies requires LOV-1, a functional partner and a TRPP1 homolog. In lov-1 mutants, PKD-2 is greatly reduced in cilia and forms abnormal aggregates in neuronal cell bodies. Intraflagellar transport (IFT) is not essential for PKD-2 dendritic motility or access to the cilium, but may regulate PKD-2 ciliary abundance. We propose that both general and cell-type-specific factors govern TRPP2/PKD-2 subcellular distribution by forming at least two steps involving somatodendritic and ciliary sorting decisions.


Current Biology | 2014

C. elegans Ciliated Sensory Neurons Release Extracellular Vesicles that Function in Animal Communication

Juan Wang; Malan Silva; Leonard A. Haas; Natalia S. Morsci; Ken C.Q. Nguyen; David H. Hall; Maureen M. Barr

Cells release extracellular vesicles (ECVs) that play important roles in intercellular communication and may mediate a broad range of physiological and pathological processes. Many fundamental aspects of ECV biogenesis and signaling have yet to be determined, with ECV detection being a challenge and obstacle due to the small size (100 nm) of the ECVs. We developed an in vivo system to visualize the dynamic release of GFP-labeled ECVs. We show here that specific Caenorhabdidits elegans ciliated sensory neurons shed and release ECVs containing GFP-tagged polycystins LOV-1 and PKD-2. These ECVs are also abundant in the lumen surrounding the cilium. Electron tomography and genetic analysis indicate that ECV biogenesis occurs via budding from the plasma membrane at the ciliary base and not via fusion of multivesicular bodies. Intraflagellar transport and kinesin-3 KLP-6 are required for environmental release of PKD-2::GFP-containing ECVs. ECVs isolated from wild-type animals induce male tail-chasing behavior, while ECVs isolated from klp-6 animals and lacking PKD-2::GFP do not. We conclude that environmentally released ECVs play a role in animal communication and mating-related behaviors.


Current Biology | 2011

The Tubulin Deglutamylase CCPP-1 Regulates the Function and Stability of Sensory Cilia in C. elegans

Robert O'Hagan; Brian P. Piasecki; Malan Silva; Prasad Phirke; Ken C.Q. Nguyen; David H. Hall; Peter Swoboda; Maureen M. Barr

BACKGROUND Posttranslational modifications (PTMs) such as acetylation, detyrosination, and polyglutamylation have long been considered markers of stable microtubules and have recently been proposed to guide molecular motors to specific subcellular destinations. Microtubules can be deglutamylated by the cytosolic carboxypeptidase CCP1. Loss of CCP1 in mice causes cerebellar Purkinje cell degeneration. Cilia, which are conserved organelles that play important diverse roles in animal development and sensation, contain axonemes comprising microtubules that are especially prone to PTMs. RESULTS Here, we report that a CCP1 homolog, CCPP-1, regulates the ciliary localization of the kinesin-3 KLP-6 and the polycystin PKD-2 in male-specific sensory neurons in C. elegans. In male-specific CEM (cephalic sensilla, male) cilia, ccpp-1 also controls the velocity of the kinesin-2 OSM-3/KIF17 without affecting the transport of kinesin-II cargo. In the core ciliated nervous system of both males and hermaphrodites, loss of ccpp-1 causes progressive defects in amphid and phasmid sensory cilia, suggesting that CCPP-1 activity is required for ciliary maintenance but not ciliogenesis. Affected cilia exhibit defective B-tubules. Loss of TTLL-4, a polyglutamylating enzyme of the tubulin tyrosine ligase-like family, suppresses progressive ciliary defects in ccpp-1 mutants. CONCLUSIONS Our studies suggest that CCPP-1 acts as a tubulin deglutamylase that regulates the localization and velocity of kinesin motors and the structural integrity of microtubules in sensory cilia of a multicellular, living animal. We propose that the neuronal degeneration caused by loss of CCP1 in mammals may represent a novel ciliopathy in which cilia are formed but not maintained, depriving the cell of cilia-based signal transduction.

Collaboration


Dive into the Maureen M. Barr's collaboration.

Top Co-Authors

Avatar

David H. Hall

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken C.Q. Nguyen

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Karla M. Knobel

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew R. Jauregui

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jinghua Hu

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge