Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Rezac is active.

Publication


Featured researches published by L. Rezac.


Science | 2015

Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko

Samuel Gulkis; Mark Allen; Paul von Allmen; Gerard Beaudin; N. Biver; Dominique Bockelee-Morvan; Mathieu Choukroun; Jacques Crovisier; B. Davidsson; P. Encrenaz; Therese Encrenaz; Margaret A. Frerking; Paul Hartogh; Mark Hofstadter; Wing-Huen Ip; Michael A. Janssen; C. Jarchow; Stephen J. Keihm; Seungwon Lee; Emmanuel Lellouch; Cedric Leyrat; L. Rezac; F. Peter Schloerb; Thomas R. Spilker

Heat transport and ice sublimation in comets are interrelated processes reflecting properties acquired at the time of formation and during subsequent evolution. The Microwave Instrument on the Rosetta Orbiter (MIRO) acquired maps of the subsurface temperature of comet 67P/Churyumov-Gerasimenko, at 1.6 mm and 0.5 mm wavelengths, and spectra of water vapor. The total H2O production rate varied from 0.3 kg s–1 in early June 2014 to 1.2 kg s–1 in late August and showed periodic variations related to nucleus rotation and shape. Water outgassing was localized to the “neck” region of the comet. Subsurface temperatures showed seasonal and diurnal variations, which indicated that the submillimeter radiation originated at depths comparable to the diurnal thermal skin depth. A low thermal inertia (~10 to 50 J K–1 m–2 s–0.5), consistent with a thermally insulating powdered surface, is inferred.


Astronomy and Astrophysics | 2015

Distribution of water around the nucleus of comet 67P/Churyumov-Gerasimenko at 3.4 AU from the Sun as seen by the MIRO instrument on Rosetta

N. Biver; Mark Hofstadter; Samuel Gulkis; Dominique Bockelee-Morvan; Mathieu Choukroun; Emmanuel Lellouch; F. P. Schloerb; L. Rezac; Wing-Huen Ip; C. Jarchow; Paul Hartogh; Seungwon Lee; P. von Allmen; Jacques Crovisier; Cedric Leyrat; P. Encrenaz

The Microwave Instrument on the Rosetta Orbiter (MIRO) has been observing the coma of comet 67P/Churyumov-Gerasimenko almost continuously since June 2014 at wavelengths near 0.53 mm. We present here a map of the water column density in the inner coma (within 3 km from nucleus center) when the comet was at 3.4 AU from the Sun. Based on the analysis of the H 2 O and H18 2 O (110-101) lines, we find that the column density can vary by two orders of magnitude in this region. The highest column density is observed in a narrow region on the dayside, close to the neck and north pole rotation axis of the nucleus, while the lowest column density is seen against the nightside of the nucleus where outgassing seems to be very low. We estimate that the outgassing pattern can be represented by a Gaussian distribution in a solid angle with FWHM ≈ 80◦.


Astronomy and Astrophysics | 2015

Spatial and diurnal variation of water outgassing on comet 67P/Churyumov-Gerasimenko observed from Rosetta/MIRO in August 2014

Seungwon Lee; Paul von Allmen; Mark Allen; Gerard Beaudin; N. Biver; Dominique Bockelee-Morvan; Mathieu Choukroun; Jacques Crovisier; P. Encrenaz; Margaret A. Frerking; Samuel Gulkis; Paul Hartogh; Mark Hofstadter; Wing-Huen Ip; Michael A. Janssen; Ch. Jarchow; Stephen J. Keihm; Emmanuel Lellouch; Cedric Leyrat; L. Rezac; F. P. Schloerb; Th. Spilker; B. Gaskell; L. Jorda; H. U. Keller; H. Sierks

Aims. We present the spatial and diurnal variation of water outgassing on comet 67P/Churyumov-Gerasimenko using the (H2O)-O-16 rotational transition line at 556.936 GHz observed from Rosetta/MIRO in August 2014. Methods. The water line was analyzed with a non-LTE radiative transfer model and an optimal estimation method to retrieve the (H2O)-O-16 outgassing intensity, expansion velocity, and gas kinetic temperature. On August 7-9, 2014 and August 18-19, 2014, MIRO performed long steady nadir-pointing observations of the nucleus while it was rotating around its spin axis. The ground track of the MIRO beam during the observation was mostly on the northern hemisphere of comet 67P, covering its three distinct parts: the so-called head, body, and neck areas. Results. The MIRO spectral observation data show that the water-outgassing intensity varies by a factor of 30, from 0.1 x 1025 molecules s(-1) sr l to 3.0 x 10(25) molecules s(-1) sr, the terminal gas expansion velocity varies by 0.17 km s(-1) from 0.61 km s(-1) to 0.78 km s(-1), and the terminal gas temperature varies by 27 K from 47 K to 74 K. The retrieved coma parameters are co-registered with local environment variables such as the subsurface temperatures, measured in the MIRO continuum bands, the local solar time, illumination condition, and beam location on nucleus. The spatial variation of the outgassing activity is very noticeable, and the largest outgassing activity in August 2014 occurs near the neck region of the nucleus. The outgassing activity in the neck region is also found to be correlated with the local solar hour, which is related to the local illumination condition.


Astronomy and Astrophysics | 2015

MIRO observations of subsurface temperatures of the nucleus of 67P/Churyumov-Gerasimenko

F. Peter Schloerb; Stephen J. Keihm; Paul von Allmen; Mathieu Choukroun; Emmanuel Lellouch; Cedric Leyrat; Gerard Beaudin; N. Biver; Dominique Bockelee-Morvan; Jacques Crovisier; P. Encrenaz; Robert W. Gaskell; Samuel Gulkis; Paul Hartogh; Mark Hofstadter; Wing-Huen Ip; Michael A. Janssen; C. Jarchow; L. Jorda; H. U. Keller; Seungwon Lee; L. Rezac; H. Sierks

Observations of the nucleus of 67P/Churyumov-Gerasimenko in the millimeter-wave continuum have been obtained by the Microwave Instrument for the Rosetta Orbiter (MIRO). We present data obtained at wavelengths of 0.5 mm and 1.6 mm during September 2014 when the nucleus was at heliocentric distances between 3.45 and 3.27 AU. The data are fit to simple models of the nucleus thermal emission in order to characterize the observed behavior and make quantitative estimates of important physical parameters, including thermal inertia and absorption properties at the MIRO wavelengths. MIRO brightness temperatures on the irregular surface of 67P are strongly affected by the local solar illumination conditions, and there is a strong latitudinal dependence of the mean brightness temperature as a result of the seasonal orientation of the comet’s rotation axis with respect to the Sun. The MIRO emission exhibits strong diurnal variations, which indicate that it arises from within the thermally varying layer in the upper centimeters of the surface. The data are quantitatively consistent with very low thermal inertia values, between 10–30 J K -1 m -2 s -1/2 , with the 0.5 mm emission arising from 1 cm beneath the surface and the 1.6 mm emission from a depth of 4 cm. Although the data are generally consistent with simple, homogeneous models, it is difficult to match all of its features, suggesting that there may be some vertical structure within the upper few centimeters of the surface. The MIRO brightness temperatures at high northern latitudes are consistent with sublimation of ice playing an important role in setting the temperatures of these regions where, based on observations of gas and dust production, ice is known to be sublimating.


Geophysical Research Letters | 2015

Increasing carbon dioxide concentration in the upper atmosphere observed by SABER

Jia Yue; James M. Russell; Yongxiao Jian; L. Rezac; Rolando R. Garcia; M. López-Puertas; Martin G. Mlynczak

Carbon dioxide measurements made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument between 2002 and 2014 were analyzed to reveal the rate of increase of CO2 in the mesosphere and lower thermosphere. The CO2 data show a trend of ~5% per decade at ~80 km and below, in good agreement with the tropospheric trend observed at Mauna Loa. Above 80 km, the SABER CO2 trend is larger than in the lower atmosphere, reaching ~12% per decade at 110 km. The large relative trend in the upper atmosphere is consistent with results from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). On the other hand, the CO2 trend deduced from the Whole Atmosphere Community Climate Model remains close to 5% everywhere. The spatial coverage of the SABER instrument allows us to analyze the CO2 trend as a function of latitude for the first time. The trend is larger in the Northern Hemisphere than in the Southern Hemisphere mesopause above 80 km. The agreement between SABER and ACE-FTS suggests that the rate of increase of CO2 in the upper atmosphere over the past 13 years is considerably larger than can be explained by chemistry-climate models.


Astronomy and Astrophysics | 2012

An upper limit for the water outgassing rate of the main-belt comet 176P/LINEAR observed with Herschel/HIFI

M. de Val-Borro; L. Rezac; Paul Hartogh; N. Biver; Dominique Bockelee-Morvan; Jacques Crovisier; M. Küppers; D. C. Lis; S. Szutowicz; Geoffrey A. Blake; M. Emprechtinger; C. Jarchow; Emmanuel Jehin; M. Kidger; L. M. Lara; Emmanuel Lellouch; R. Moreno; Miriam Rengel

176P/LINEAR is a member of the new cometary class known as main-belt comets (MBCs). It displayed cometary activity shortly during its 2005 perihelion passage, which may be driven by the sublimation of subsurface ices. We have therefore searched for emission of the H_(2)O 1_(10)–1_(01) ground state rotational line at 557 GHz toward 176P/LINEAR with the Heterodyne Instrument for the Far Infrared (HIFI) onboard the Herschel Space Observatory on UT 8.78 August 2011, about 40 days after its most recent perihelion passage, when the object was at a heliocentric distance of 2.58 AU. No H_(2)O line emission was detected in our observations, from which we derive sensitive 3-σ upper limits for the water production rate and column density of <4 × 10^(25) mol  s^(-1) and of <3 × 10^(10) cm^(-2), respectively. From the peak brightness measured during the object’s active period in 2005, this upper limit is lower than predicted by the relation between production rates and visual magnitudes observed for a sample of comets at this heliocentric distance. Thus, 176P/LINEAR was most likely less active at the time of our observation than during its previous perihelion passage. The retrieved upper limit is lower than most values derived for the H2O production rate from the spectroscopic search for CN emission in MBCs.


Astronomy and Astrophysics | 2015

Dark side of comet 67P/Churyumov-Gerasimenko in Aug.-Oct. 2014. MIRO/Rosetta continuum observations of polar night in the southern regions

Mathieu Choukroun; Stephen J. Keihm; F. P. Schloerb; Samuel Gulkis; Emmanuel Lellouch; Cedric Leyrat; P. von Allmen; N. Biver; Dominique Bockelee-Morvan; Jacques Crovisier; P. Encrenaz; Paul Hartogh; Mark Hofstadter; Wing-Huen Ip; C. Jarchow; Michael A. Janssen; Seungwon Lee; L. Rezac; Gerard Beaudin; B. Gaskell; L. Jorda; H. U. Keller; H. Sierks

The high obliquity (similar to 50 degrees) of comet 67P/Churyumov-Gerasimenko (67P) is responsible for a long-lasting winter polar night in the southern regions of the nucleus. We report observations made with the submillimeter and millimeter continuum channels of the Microwave Instrument onboard the Rosetta Orbiter (MIRO) of the thermal emission from these regions during the period August-October 2014. Before these observations, the southern polar regions had been in darkness for approximately five years. Subsurface temperatures in the range 25 50 K are measured. Thermal model calculations of the nucleus near-surface temperatures carried out over the orbit of 67P, coupled with radiative transfer calculations of the MIRO channels brightness temperatures, suggest that these regions have a thermal inertia within the range 10-60 Jm(-2) K-1 s(-0.5). Such low thermal inertia values are consistent with a highly porous, loose, regolith-like surface. These values are similar to those derived elsewhere on the nucleus. A large difference in the brightness temperatures measured by the two MIRO continuum channels is tentatively attributed to dielectric properties that differ significantly from the sunlit side, within the first few tens of centimeters. This is suggestive of the presence of ice(s) within the MIRO depths of investigation in the southern polar regions. These regions started to receive sunlight in May of 2015, and refinements of the shape model in these regions, as well as continuing MIRO observations of 67P, will allow refining these results and reveal the thermal properties and potential ice content of the southern regions in more detail.


Astronomy and Astrophysics | 2015

First detection of the 63um atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA

L. Rezac; Paul Hartogh; R. Güsten; Helmut Wiesemeyer; Heinz-Wilhelm Hübers; C. Jarchow; Heiko Richter; B. Klein; N. Honingh

Context. The Stratospheric Observatory for Infrared Astronomy (SOFIA) with its 2.5 m telescope provides new science opportunities for spectroscopic observations of planetary atmospheres in the far-infrared wavelength range. Aims. This paper presents first results from the 14 May, 2014 observing campaign of the Martian atmosphere at 4.7 THz using the German REceiver for Astronomy at Terahertz frequencies (GREAT) instrument. Methods. The atomic oxygen 63 m transition, OI, was detected in absorption against the Mars continuum, with a high signal-to-noise ratio ( 35). A beam-averaged atomic oxygen from a global circulation model was used as input to the radiative transfer simulations of the observed line area and to obtain a new estimate on the column density using a grid-search method. Results. Minimizing di erences between the calculated and observed line intensities in the least-square sense yields an atomic oxygen column density of (1:1 0:2) 10 17 cm 2 . This value is about twice as low as predicted by a modern photochemical model of Mars. The radiative transfer simulations indicate that the line forms in the upper atmospheric region over a rather extended altitude region of 70‐120 km. Conclusions. For the first time, a far-infrared transition of the atomic oxygen line was detected in the atmosphere of Mars. The absorption depth provides an estimate on the column density, and this measurement provides additional means to constrain the photochemical models in global circulation models and airglow studies. The lack of other means for monitoring the atomic oxygen in the Martian upper atmosphere makes future observations with the SOFIA observatory highly desirable.


Journal of Geophysical Research | 2015

Validation of the global distribution of CO2 volume mixing ratio in the mesosphere and lower thermosphere from SABER

L. Rezac; Yongxiao Jian; Jia Yue; James M. Russell; Alexander A. Kutepov; Rolando R. Garcia; Kaley A. Walker; Peter F. Bernath

The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite has been measuring the limb radiance in 10 broadband infrared channels over the altitude range from ~ 400 km to the Earth’s surface since 2002. The kinetic temperatures and CO2 volume mixing ratios (VMRs) in the mesosphere and lower thermosphere have been simultaneously retrieved using SABER limb radiances at 15 and 4.3μm under nonlocal thermodynamic equilibrium (non-LTE) conditions. This paper presents results of a validation study of the SABER CO2 VMRs obtained with a two-channel, self-consistent temperature/CO2 retrieval algorithm. Results are based on comparisons with coincident CO2 measurements made by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and simulations using the Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM). The SABER CO2 VMRs are in agreement with ACE-FTS observations within reported systematic uncertainties from 65 to 110 km. The annual average SABER CO2 VMR falls off from a well-mixed value above ~80 km. Latitudinal and seasonal variations of CO2 VMRs are substantial. SABER observations and the SD-WACCM simulations are in overall agreement for CO2 seasonal variations, as well as global distributions in the mesosphere and lower thermosphere. Not surprisingly, the CO2 seasonal variation is shown to be driven by the general circulation, converging in the summer polar mesopause region and diverging in the winter polar mesopause region.


Astronomy and Astrophysics | 2014

Herschel observations of gas and dust in comet C/2006 W3 (Christensen) at 5 AU from the Sun

M. de Val-Borro; Dominique Bockelee-Morvan; Emmanuel Jehin; Paul Hartogh; Cyrielle Opitom; S. Szutowicz; N. Biver; Jacques Crovisier; Dariusz C. Lis; L. Rezac; T. de Graauw; Damien Hutsemekers; C. Jarchow; M. Kidger; M. Küppers; L. M. Lara; Jean Manfroid; Miriam Rengel; B. M. Swinyard; D. Teyssier; B. Vandenbussche; C. Waelkens

Context. Cometary activity at large heliocentric distances is thought to be driven by outgassing of molecular species more volatile than water that are present in the nucleus. The long-period comet C/2006 W3 (Christensen) was an exceptional target for a detailed study of its distant gaseous and dust activity. Aims. We aimed to measure the H_2O and dust production rates in C/2006 W3 (Christensen) with the Herschel Space Observatory at a heliocentric distance of ~5 AU and compared these data with previous post-perihelion Herschel and ground-based observations at ~3.3 AU from the Sun. Methods. We have searched for emission in the HO and NH_3 ground-state rotational transitions, J_K_(a)K_(c) (1_(10)–1_(01)) at 557 GHz and JK (1_(0)–0_(0)) at 572 GHz, simultaneously, toward comet C/2006 W3 (Christensen) with the Heterodyne Instrument for the Far Infrared (HIFI) onboard Herschel on UT 1.5 September 2010. Photometric observations of the dust coma in the 70 μm and 160 μm channels were acquired with the Photodetector Array Camera and Spectrometer (PACS) instrument on UT 26.5 August 2010. Results. A tentative 4σ H_2O line emission feature was found in the spectra obtained with the HIFI wide-band and high-resolution spectrometers, from which we derive a water production rate of (2.0 ± 0.5) × 1027 molec s^(-1). A 3σ upper limit for the ammonia production rate of <1.5 × 10^(27) molec s^(-1) is obtained taking into account the contribution from all hyperfine components. The dust thermal emission was detected in the 70 μm and 160 μm filters, with a more extended emission in the blue channel. We fit the radial dependence of the surface brightness with radially symmetric profiles for the blue and red bands. The dust production rates, obtained for a dust size distribution index that explains the fluxes at the photocenters of the 70 μm and 160 μm PACS images, lie in the range 70 kg s^(-1) to 110 kg s^(-1). Scaling the CO production rate measured post-perihelion at 3.20 AU and 3.32 AU, these values correspond to a dust-to-gas production rate ratio in the range 0.3–0.4. Conclusions. The blueshift of the water line detected by HIFI suggests preferential emission from the subsolar point. However, it is also possible that water sublimation occurs in small ice-bearing grains that are emitted from an active region on the nucleus surface at a speed of ~0.2 km s^(-1). The dust production rates derived in August 2010 are roughly one order of magnitude lower than in September 2009, suggesting that the dust-to-gas production rate ratio remained approximately constant during the period when the activity became increasingly dominated by CO outgassing.

Collaboration


Dive into the L. Rezac's collaboration.

Top Co-Authors

Avatar

Paul Hartogh

Ludwig Maximilian University of Munich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Hofstadter

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mathieu Choukroun

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Samuel Gulkis

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Keihm

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Janssen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

P. Encrenaz

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge