Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Ruocco is active.

Publication


Featured researches published by L. Ruocco.


Neuroscience & Biobehavioral Reviews | 2003

Behavioural, pharmacological, morpho-functional molecular studies reveal a hyperfunctioning mesocortical dopamine system in an animal model of attention deficit and hyperactivity disorder

Davide Viggiano; Daniela Vallone; L. Ruocco

Clinical and experimental evidence suggest an involvement of dopamine systems, mainly the mesocorticolimbic one (MCL), in Attention-Deficit Hyperactivity Disorder (ADHD). However, it remains to be ascertained whether the systems are hyper- or hypo-functioning, for the implications of the functional state. Indeed, differential functional states of the MCL branches are suggested to be the neural substrate of different ADHD variants. This review covers published and unpublished data from the Naples-High Excitability (NHE) rat, an animal model of ADHD, featuring its main aspects, with no hypertension. Therefore, a multiple approach based on morphological studies of dopamine, norepinephrine, glutamate, acetylcholine and GABA systems, synaptic (Calcium/Calmodulin kinase II) and extrasynaptic (chondroitin sulphates) environments, and molecular biology and pharmacological studies on the dopamine system has been carried out. Morphological findings suggest dopamine neurons in the Ventral Tegmental Area (VTA) to be hypertrophic in NHE rats. The mesostriatal and mesolimbic dopamine branches appear to be normal in basal conditions. However, the striatal interface is probably defective following activation. Conversely, the prefrontal cortex, which represents the second main target of VTA dopamine neurons, has many alterations at the basal level. Therefore, the emerging picture is the association of a hyperinnervating and hyperfunctioning mesocortical branch of the dopamine system. Thus, the evidence gathered so far might improve our understanding of the neural substrates of neuropsychiatric disorders such as ADHD, schizophrenia and drug addiction.


European Journal of Neuroscience | 2008

The histamine H1‐receptor mediates the motivational effects of novelty

Armin Zlomuzica; D. Viggiano; M.A. de Souza Silva; T. Ishizuka; U.A. Gironi Carnevale; L. Ruocco; Toshimasa Watanabe; Joseph P. Huston; Ekrem Dere

Novelty‐induced arousal has motivational effects and can reinforce behavior. The mechanisms by which novelty acts as a reinforcer are unknown. Novelty‐induced arousal can be either rewarding or aversive dependent on its intensity and the preceding state of arousal. The brains histamine system has been implicated in both arousal and reinforcement. Histamine and histamine‐1‐receptor (H1R) agonists induced arousal and wakefulness in humans and rodents, e.g. by stimulating cortical acetylcholine (ACh) release. The H1R has also been implicated in processes of brain reward via interactions with the nigrostriatal‐ and mesolimbic dopamine (DA) systems. We asked whether the motivational effects of novelty‐induced arousal are compromised in H1R knockout (KO) mice. The H1R‐KO mice failed to develop a conditioned place‐preference induced by novel objects. Even though they still explore novel objects, their reinforcing value is diminished. Furthermore, they showed impaired novelty‐induced alternation in the Y‐maze. Rearing activity and emotional behavior in a novel environment was also altered in H1R‐KO mice, whereas object‐place recognition was unaffected. The H1R‐KO mice had higher ACh concentrations in the frontal cortex and amygdala (AMY). In the latter, the H1R‐KO mice had also increased levels of DA, but a lower dihydrophenylacetic acid/DA ratio. Furthermore, the H1R‐KO mice had also increased tyrosine hydroxylase immunoreactivity in the basolateral anterior, basolateral ventral and cortical AMY nuclei. We conclude that the motivational effects of novelty are diminished in H1R‐KO mice, possibly due to reduced novelty‐induced arousal and/or a dysfunctional brain reward system.


Brain Research Bulletin | 2009

Attenuating effects of testosterone on depressive-like behavior in the forced swim test in healthy male rats

Tim Buddenberg; Mara Komorowski; L. Ruocco; M.A. de Souza Silva; Bianca Topic

The androgenic steroid testosterone is well known for its function in reproduction, sexual differentiation and sexual behavior. A growing number of human and animal studies suggest a modulatory role of testosterone in the regulation of emotionality and associated psychiatric disorders, including depressive-like disorders. However, most of the studies have been carried out in subjects deficient in androgenic steroid levels. Here, we tested potential beneficial effects of subcutaneously applied testosterone on emotionality and depressive-like behavior in healthy male rats. For this purpose, male Wistar rats (3-4 months) received either vehicle or testosterone (1.0, 2.0, 4.0mg/kg) subcutaneously and were tested for potential effects on motor activity and anxiety-like behavior in a novel open field and elevated plus-maze. The forced swim test was used for assessing potential beneficial effects of testosterone on depressive-like behavior. The results show, that, while subcutaneous application of testosterone failed to influence spontaneous motor activity as well as anxiety-like behavior in the open field, a trend for an increase in the time spent on the open arms in the elevated plus-maze with the highest dose was found. Furthermore, in the forced swim test, testosterone application induced a dose-dependent reduction of immobility behavior, indicating antidepressant-like action of testosterone in healthy animals.


Behavioural Brain Research | 2002

Activity, non-selective attention and emotionality in dopamine D2/D3 receptor knock-out mice.

Daniela Vallone; M Pignatelli; G Grammatikopoulos; L. Ruocco; Yuri Bozzi; H Westphal; E Borrelli

In order to assess the role of dopamine (DA) D2 and D3 receptors in the modulation of behaviour, we analysed exploration in a spatial novelty in mouse model systems. Genetically engineered mice mutants have been used that carry normal, partial or no expression of D2R, D3R, or both D2R/D3R (double mutants) DA receptor subtypes. Adult male mice were exposed for 30 min to a Làte-maze. The behaviour was analysed for indices of activity, orienting (rearing frequency), scanning times (rearing duration) and defecation score (emotionality). D2R - / - and + / - as well as the D2R/D3R double homozygous mutants were less active than wild-type (WT) controls in travelled distance. In contrast D3R + / - were more active than WT mice in the first part of the test. As to orienting frequency, the D2R - / - were less active than WT during the entire test-period, whereas the D2 + / - mutants were less active than WT only in the second part of the test. Moreover, the D3R - / - and + / - mutants showed less and more rearing frequency than WT, respectively, during the entire test. Finally, the D2/D3R - / - double mutants were also less active than WT during the entire test period. As to scanning times, D2R + / - and - / - mutants were higher than WT during the entire test or only in the second part, respectively. The D3R + / - and - / - were not different from WT, whereas the D2/D3R - / - double mutants showed shorter scanning times only in the first part of the test. As to emotionality index, the defecation score, was lower only in D3R + / - mutants. Thus, the dopamine D2 and D3 receptor subtypes appear to be differentially involved in the modulation of activity, orienting and scanning phases of attention. Lastly double mutation experiments reveal an interaction between D2R and D3R with the former prevailing on the latter.


Neuroscience | 2008

Episodic-like and procedural memory impairments in histamine H1 Receptor knockout mice coincide with changes in acetylcholine esterase activity in the hippocampus and dopamine turnover in the cerebellum.

Ekrem Dere; Armin Zlomuzica; D. Viggiano; L. Ruocco; T. Watanabe; Joseph P. Huston; M. A. De Souza-Silva

We investigated episodic-like (ELM) and procedural memory (PM) in histamine H1 receptor knockout (H1R-KO) mice. In order to relate possible behavioral deficits to neurobiological changes, we examined H1R-KO and wild-type (WT) mice in terms of acetylcholine esterase (AChE) activity in subregions of the hippocampus and AChE and tyrosine hydroxylase (TH) expression in the striatum. Furthermore, we analyzed acetylcholine (ACh), 5-HT and dopamine (DA) levels, including metabolites, in the cerebellum of H1R-KO and WT mice. The homozygous H1R-KO mice showed impaired ELM as compared with the heterozygous H1R-KO and WT mice. The performance of homozygous H1R-KO mice in the ELM task was primarily driven by familiarity-based memory processes. While the homozygous H1R-KO mice performed similar to the heterozygous H1R-KO and WT mice during the acquisition of a PM, as measured with an accelerating rotarod, after a retention interval of 7 days their performance was impaired relative to the heterozygous H1R-KO and WT mice. These findings suggest that, both, ELM and long-term PM are impaired in the homozygous H1R-KO mice. Neurochemical assays revealed that the H1R-KO mice had significantly lower levels of AChE activity in the dentate gyrus (DG) and CA1 subregions of the hippocampus as compared with the WT mice. The homozygous H1R-KO mice also displayed significantly reduced dihydroxyphenylacetic acid (DOPAC) levels and a reduced DOPAC/DA ratio in the cerebellum, suggesting that the DA turnover in the cerebellum is decelerated in homozygous H1R-KO mice. In conclusion, homozygous H1R-KO mice display severe long-term memory deficits in, both, ELM and PM, which coincide with changes in AChE activity in the hippocampus as well as DA turnover in the cerebellum. The importance of these findings for Alzheimers (AD) and Parkinsons disease (PD) is discussed.


PLOS ONE | 2011

Measurement of Warfarin in the Oral Fluid of Patients Undergoing Anticoagulant Oral Therapy

Silvia Ghimenti; Tommaso Lomonaco; Massimo Onor; L Murgia; Aldo Paolicchi; Roger Fuoco; L. Ruocco; G. Pellegrini; Maria Giovanna Trivella; Fabio Di Francesco

Background Patients on warfarin therapy undergo invasive and expensive checks for the coagulability of their blood. No information on coagulation levels is currently available between two controls. Methodology A method was developed to determine warfarin in oral fluid by HPLC and fluorimetric detection. The chromatographic separation was performed at room temperature on a C-18 reversed-phase column, 65% PBS and 35% methanol mobile phase, flow rate 0.7 mL/min, injection volume 25 µL, excitation wavelength 310 nm, emission wavelength 400 nm. Findings The method was free from interference and matrix effect, linear in the range 0.2–100 ng/mL, with a detection limit of 0.2 ng/mL. Its coefficient of variation was <3% for intra-day measurements and <5% for inter-day measurements. The average concentration of warfarin in the oral fluid of 50 patients was 2.5±1.6 ng/mL (range 0.8–7.6 ng/mL). Dosage was not correlated to INR (r = −0.03, p = 0.85) but positively correlated to warfarin concentration in the oral fluid (r = 0.39, p = 0.006). The correlation between warfarin concentration and pH in the oral fluid (r = 0.37, p = 0.009) confirmed the importance of pH in regulating the drug transfer from blood. A correlation between warfarin concentration in the oral fluid and INR was only found in samples with pH values ≥7.2 (r = 0.84, p = 0.004). Conclusions Warfarin diffuses from blood to oral fluid. The method allows to measure its concentration in this matrix and to analyze correlations with INR and other parameters.


British Journal of Pharmacology | 2009

Histamine H1 receptor knockout mice exhibit impaired spatial memory in the eight-arm radial maze

Armin Zlomuzica; L. Ruocco; Joseph P. Huston; Ekrem Dere

Background and purpose:  In the mammalian brain, histaminergic neurotransmission is mediated by the postsynaptic histamine H1 and H2 receptors and the presynaptic H3 autoreceptor, which also acts as a heteroreceptor. The H1 receptor has been implicated in spatial learning and memory formation. However, pharmacological and lesion studies have revealed conflicting results. To examine the involvement of histamine H1 receptor in spatial reference and working memory formation, H1 receptor knockout mice (KO) were tested in the eight‐arm radial maze. Previously, we found that the H1 receptor‐KO mice showed reduced emotionality when confronted with spatial novelty. As it is known that emotions can have an impact on spatial learning and memory performance, we also evaluated H1 receptor‐KO mice in terms of emotional behaviour in the light–dark box.


European Neuropsychopharmacology | 2009

Intranasal application of dopamine reduces activity and improves attention in Naples High Excitability rats that feature the mesocortical variant of ADHD.

L. Ruocco; Maria A. de Souza Silva; Bianca Topic; Claudia Mattern; Joseph P. Huston

Based on findings of a profound action of intranasally applied dopamine (DA) on dopamine release in the striatum, we examined the possibility that intranasal application of DA would influence indices of attention and activity in juvenile male rats of the Naples High Excitability line. This rat model features the main aspects of Attention Deficit/Hyperactivity Disorder (ADHD). Juvenile NHE rats received an intranasal application of either DA (0.075 mg/kg, 0.15 mg/kg and 0.3 mg/kg) or vehicle into both nostrils daily for 15 days. On day 14, 1 h after treatment, they were tested in the Làt maze, and one day later, in the eight arm radial maze. Activity in the Làt maze: The highest dose of DA (0.3 mg/kg) decreased horizontal (HA) and vertical (VA) activity during the first 10 min of the test. No effect was found for rearing duration (RD), which indexes non-selective attention (NSA). Activity in the radial maze: No treatment effects were found for HA and VA components, and for RD. Attention indices: The intermediate dose of DA (0.15 mg/kg) significantly improved the number of arms visited before the first repetitive arm entry in the radial maze, an index of selective spatial attention (SSA). In conclusion, intranasal application of DA reduced hyperactivity at the highest dose used, whereas the intermediate dose improved attention in an animal model of ADHD. These results suggest the potential of employing intranasal DA for therapeutic purposes.


PLOS ONE | 2014

Prepuberal Stimulation of 5-HT7-R by LP-211 in a Rat Model of Hyper-Activity and Attention-Deficit: Permanent Effects on Attention, Brain Amino Acids and Synaptic Markers in the Fronto-Striatal Interface

L. Ruocco; Concetta Treno; Ugo A.Gironi Carnevale; Claudio Arra; Gianpiero Boatto; Maria Nieddu; Cristina Pagano; Placido Illiano; Fabiana Barbato; Angela Tino; Ezio Carboni; Giovanni Laviola; Enza Lacivita; Marcello Leopoldo; Walter Adriani

The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211) on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD). Naples High Excitability rats (NHE) and their Random Bred controls (NRB) were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA), selective spatial attention (SSA) and emotionality. The quantity of L-Glutamate (L-Glu), L-Aspartate (L-Asp) and L-Leucine (L-Leu), dopamine transporter (DAT), NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC), dorsal (DS) and ventral striatum (VS), for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose) reduced horizontal activity and (at higher dose) increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose), whereas (at 0.125 mg/kg dose) it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC), and increased with the 0.250 mg/kg dose (in the VS), significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose) decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates.


Neuroscience | 2008

Galactosylated dopamine enters into the brain, blocks the mesocorticolimbic system and modulates activity and scanning time in Naples high excitability rats

L. Ruocco; D. Viggiano; Andrea Viggiano; Enrico Abignente; Maria Grazia Rimoli; Daniela Melisi; Annalisa Curcio; Maria Nieddu; Giampiero Boatto; Ezio Carboni; U.A. Gironi Carnevale

Pathological conditions, such as Parkinsons disease and attention deficit hyperactivity disorder, have been linked to alterations of specific dopamine (DA) pathways. However, since exogenous DA does not cross the blood-brain barrier, DA levels can be modulated e.g. by DA precursors or DA reuptake blockers. Hereby histochemical, analytical and behavioral evidence shows that a galactosylated form of DA (GAL-DA) carries DA into the brain, thus modulating activity and nonselective attention in rats. To this aim adult male rats of the Naples high-excitability (NHE) and random bred controls (NRB) lines were given a single i.p. injection of GAL-DA (10 or 100 mg/kg). Three hours later the behavior was videotaped and analyzed for horizontal activity, orienting frequency and scanning duration. The dose of 100 mglkg of GAL-DA reduced by 25% the horizontal activity in NHE rats, mainly in the first part of the testing period. No effect was observed on orienting frequency or on scanning duration. However, GAL-DA 100 mg/kg was associated with longer rearing episodes in the second part of the testing period in NHE rats. In parallel experiments histochemistry with a galactose-specific lectin showed 10% increase in galactose residues into the striatum between 0.5 and 3.0 h. To quantify the level of GAL-DA, its metabolite DA-succinate and DA in the prefrontal cortex, neostriatum, and cerebellum, rats were killed 2.0 h after the injection of prodrug. Mass high performance liquid chromatography (HPLC) was used for analysis of GAL-DA and DA succinate whereas electrochemical HPLC for DA. Both HPLC techniques demonstrate that GAL-DA carries and releases DA into the brain. Specifically 100 mg/kg of GAL-DA increased DA level in the striatum in the NHE rats only. Moreover, DA in the mesencephalon (MES) was correlated positively with striatal and prefrontal cortex DA in NHE rats. In contrast DA in the MES was negatively correlated with striatal DA in NRB. GAL-DA disrupted these correlations in both rat lines. Thus, this new DA prodrug may modify DA neurotransmission and might have a potential clinical application.

Collaboration


Dive into the L. Ruocco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge