Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tommaso Lomonaco is active.

Publication


Featured researches published by Tommaso Lomonaco.


PLOS ONE | 2011

Measurement of Warfarin in the Oral Fluid of Patients Undergoing Anticoagulant Oral Therapy

Silvia Ghimenti; Tommaso Lomonaco; Massimo Onor; L Murgia; Aldo Paolicchi; Roger Fuoco; L. Ruocco; G. Pellegrini; Maria Giovanna Trivella; Fabio Di Francesco

Background Patients on warfarin therapy undergo invasive and expensive checks for the coagulability of their blood. No information on coagulation levels is currently available between two controls. Methodology A method was developed to determine warfarin in oral fluid by HPLC and fluorimetric detection. The chromatographic separation was performed at room temperature on a C-18 reversed-phase column, 65% PBS and 35% methanol mobile phase, flow rate 0.7 mL/min, injection volume 25 µL, excitation wavelength 310 nm, emission wavelength 400 nm. Findings The method was free from interference and matrix effect, linear in the range 0.2–100 ng/mL, with a detection limit of 0.2 ng/mL. Its coefficient of variation was <3% for intra-day measurements and <5% for inter-day measurements. The average concentration of warfarin in the oral fluid of 50 patients was 2.5±1.6 ng/mL (range 0.8–7.6 ng/mL). Dosage was not correlated to INR (r = −0.03, p = 0.85) but positively correlated to warfarin concentration in the oral fluid (r = 0.39, p = 0.006). The correlation between warfarin concentration and pH in the oral fluid (r = 0.37, p = 0.009) confirmed the importance of pH in regulating the drug transfer from blood. A correlation between warfarin concentration in the oral fluid and INR was only found in samples with pH values ≥7.2 (r = 0.84, p = 0.004). Conclusions Warfarin diffuses from blood to oral fluid. The method allows to measure its concentration in this matrix and to analyze correlations with INR and other parameters.


Journal of Breath Research | 2013

Monitoring breath during oral glucose tolerance tests.

Silvia Ghimenti; S. Tabucchi; Tommaso Lomonaco; F. Di Francesco; Roger Fuoco; M. Onor; S. Lenzi; Maria Giovanna Trivella

The evolution of breath composition during oral glucose tolerance tests (OGTTs) was analysed by thermal desorption/gas chromatography/mass spectrometry in 16 subjects and correlated to blood glucose levels. The glucose tolerance tests classified five of the subjects as diabetics, eight as affected by impaired glucose tolerance and three as normoglycaemic. Acetone levels were generally higher in diabetics (average concentration values: diabetics, 300 ± 40 ppbv; impaired glucose tolerance, 350 ± 30 ppbv; normoglycaemic, 230 ± 20 ppbv) but the large inter-individual variability did not allow us to identify the three groups by this parameter alone. The exhalation of 3-hydroxy-butan-2-one and butane-2,3-dione, likely due to the metabolization of glucose by bacteria in the mouth, was also observed. Future work will involve the extension of the analyses to other volatile compounds by attempting to improve the level of discrimination between the various classes of subjects.


Journal of Chromatography A | 2013

Determination of total and unbound warfarin and warfarin alcohols in human plasma by high performance liquid chromatography with fluorescence detection

Tommaso Lomonaco; Silvia Ghimenti; I. Piga; Massimo Onor; Bernardo Melai; Roger Fuoco; Fabio Di Francesco

Two analytical procedures are presented for the determination of the total content and unbound fraction of both warfarin and warfarin alcohols in human plasma. Chromatographic separation was carried out in isocratic conditions at 25°C on a C-18 reversed-phase column with a mobile phase consisting of a 70% buffer phosphate 25mM at pH=7, 25% methanol and 5% acetonitrile at a flow rate of 1.2mL/min. Fluorescence detection was performed at 390nm (excitation wavelength 310nm). Neither method showed any detectable interference or matrix effect. Inter-day recovery of the total warfarin and warfarin alcohols at a concentration level of 1000ng/mL was 89±3% and 73±3%, respectively, whereas for their unbound fraction (at a concentration level of 10ng/mL) was 66±8% and 90±7%, respectively. The intra- and inter-day precision (assessed as relative standard deviation) was <10% for both methods. The limits of detection were 0.4 and 0.2ng/mL for warfarin and warfarin alcohols, respectively. The methods were successfully applied to a pooled plasma sample obtained from 69 patients undergoing warfarin therapy.


Journal of Breath Research | 2015

Comparison of sampling bags for the analysis of volatile organic compounds in breath.

Silvia Ghimenti; Tommaso Lomonaco; Francesca Bellagambi; S. Tabucchi; M. Onor; Maria Giovanna Trivella; Alessio Ceccarini; Roger Fuoco; F. Di Francesco

Nalophan, Tedlar and Cali-5-Bond polymeric bags were compared to determine the most suitable type for breath sampling and storage when volatile organic compounds are to be determined. Analyses were performed by thermal desorption gas chromatography mass spectrometry. For each bag, the release of contaminants and the chemical stability of a gaseous standard mixture containing eighteen organic compounds, as well as the CO2 partial pressure were assessed. The selected compounds were representative of breath constituents and belonged to different chemical classes (i.e. hydrocarbons, ketones, aldehydes, aromatics, sulfurs and esters). In the case of Nalophan, the influence of the surface-to-volume ratio, related to the bags filling degree, on the chemical stability was also evaluated. Nalophan bags were found to be the most suitable in terms of contaminants released during storage (only 2-methyl-1,3-dioxalane), good sample stability (up to 24 h for both dry and humid samples), and very limited costs (about 1 € for a 20 liter bag). The (film) surface-to-(sample) volume ratio was found to be an important factor affecting the stability of selected compounds, and therefore we recommended to fill the bag completely.


Journal of Pharmaceutical and Biomedical Analysis | 2015

Determination of sevoflurane and isopropyl alcohol in exhaled breath by thermal desorption gas chromatography-mass spectrometry for exposure assessment of hospital staff

Silvia Ghimenti; S. Tabucchi; Francesca Bellagambi; Tommaso Lomonaco; Massimo Onor; Maria Giovanna Trivella; Roger Fuoco; Fabio Di Francesco

Volatile anaesthetics and disinfection chemicals pose ubiquitous inhalation and dermal exposure risks in hospital and clinic environments. This work demonstrates specific non-invasive breath biomonitoring methodology for assessing staff exposures to sevoflurane (SEV) anaesthetic, documenting its metabolite hexafluoroisopropanol (HFIP) and measuring exposures to isopropanol (IPA) dermal disinfection fluid. Methods are based on breath sample collection in Nalophan bags, followed by an aliquot transfer to adsorption tube, and subsequent analysis by thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). Ambient levels of IPA were also monitored. These methods could be generalized to other common volatile chemicals found in medical environments. Calibration curves were linear (r(2)=0.999) in the investigated ranges: 0.01-1000 ppbv for SEV, 0.02-1700 ppbv for IPA, and 0.001-0.1 ppbv for HFIP. The instrumental detection limit was 10 pptv for IPA and 5 pptv for SEV, both estimated by extracted ion-TIC chromatograms, whereas the HFIP minimum detectable concentration was 0.5 pptv as estimated in SIM acquisition mode. The methods were applied to hospital staff working in operating rooms and clinics for blood draws. SEV and HFIP were present in all subjects at concentrations in the range of 0.7-18, and 0.002-0.024 ppbv for SEV and HFIP respectively. Correlation between IPA ambient air and breath concentration confirmed the inhalation pathway of exposure (r=0.95, p<0.001) and breath-borne IPA was measured as high as 1500 ppbv. The methodology is easy to implement and valuable for screening exposures to common hospital chemicals. Although the overall exposures documented were generally below levels of health concern in this limited study, outliers were observed that indicate potential for acute exposures.


PLOS ONE | 2014

Influence of Sampling on the Determination of Warfarin and Warfarin Alcohols in Oral Fluid

Tommaso Lomonaco; Silvia Ghimenti; I. Piga; D. Biagini; Massimo Onor; Roger Fuoco; Fabio Di Francesco

Background and Objective The determination of warfarin, RS/SR- and RR/SS-warfarin alcohols in oral fluid may offer additional information to the INR assay. This study aimed to establish an optimized sampling technique providing the best correlation between the oral fluid and the unbound plasma concentrations of these compounds. Materials and Methods Samples of non-stimulated and stimulated oral fluid, and blood were collected from 14 patients undergoing warfarin therapy. After acidification, analytes were extracted with a dichloromethane/hexane mixture and determined by HPLC with fluorescence detection. Plasma samples were also ultrafiltered for the determination of the unbound fraction. The chromatographic separation was carried out in isocratic conditions with a phosphate buffer/methanol mobile phase on a C-18 reversed-phase column. The absence of interfering compounds was verified by HPLC-ESI-Q-TOF. Results Stimulation generally increased the oral fluid pH to values close to blood pH in about 6 minutes. The concentration of warfarin and RS/SR-warfarin alcohols in oral fluid followed the same trend, whereas the concentration of RR/SS-warfarin alcohols was not affected. Six minute stimulation with chewing gum followed by collection with a polyester swab was the best sampling procedure, with a good repeatability (RSD <10%) and relatively low inter-subject variability (RSD  = 30%) of the oral fluid to plasma ratio. This procedure provided strong correlations between the measured oral fluid and unbound plasma concentration of warfarin (r  =  0.92, p <0.001) and RS/SR-warfarin alcohols (r  =  0.84, p <0.001), as well as between stimulated oral fluid and total plasma concentration of warfarin (r  =  0.78, p <0.001) and RS/SR-warfarin alcohols (r  =  0.81, p <0.001). Conclusion The very good correlation between oral fluid and unbound plasma concentration of warfarin and RS/SR-warfarin alcohols suggests that oral fluid analysis could provide clinically useful information for the monitoring of anticoagulant therapy, complementary to the INR assay.


Medical Engineering & Physics | 2015

A dual mode breath sampler for the collection of the end-tidal and dead space fractions

Pietro Salvo; Carlo Ferrari; R. Persia; Silvia Ghimenti; Tommaso Lomonaco; Francesca Bellagambi; F. Di Francesco

This work presents a breath sampler prototype automatically collecting end-tidal (single and multiple breaths) or dead space air fractions (multiple breaths). This result is achieved by real time measurements of the CO2 partial pressure and airflow during the expiratory and inspiratory phases. Suitable algorithms, used to control a solenoid valve, guarantee that a Nalophan(®) bag is filled with the selected breath fraction even if the subject under test hyperventilates. The breath sampler has low pressure drop (<0.5 kPa) and uses inert or disposable components to avoid bacteriological risk for the patients and contamination of the breath samples. A fully customisable software interface allows a real time control of the hardware and software status. The performances of the breath sampler were evaluated by comparing (a) the CO2 partial pressure calculated during the sampling with the CO2 pressure measured off-line within the Nalophan(®) bag; (b) the concentrations of four selected volatile organic compounds in dead space, end-tidal and mixed breath fractions. Results showed negligible deviations between calculated and off-line CO2 pressure values and the distributions of the selected compounds into dead space, end-tidal and mixed breath fractions were in agreement with their chemical-physical properties.


Sensors | 2017

Sensors and Biosensors for C-Reactive Protein, Temperature and pH, and Their Applications for Monitoring Wound Healing: A Review

Pietro Salvo; Valentina Dini; Arno Kirchhain; Agata Janowska; Teresa Oranges; Andrea Chiricozzi; Tommaso Lomonaco; Fabio Di Francesco; Marco Romanelli

Wound assessment is usually performed in hospitals or specialized labs. However, since patients spend most of their time at home, a remote real time wound monitoring would help providing a better care and improving the healing rate. This review describes the advances in sensors and biosensors for monitoring the concentration of C-reactive protein (CRP), temperature and pH in wounds. These three parameters can be used as qualitative biomarkers to assess the wound status and the effectiveness of therapy. CRP biosensors can be classified in: (a) field effect transistors, (b) optical immunosensors based on surface plasmon resonance, total internal reflection, fluorescence and chemiluminescence, (c) electrochemical sensors based on potentiometry, amperometry, and electrochemical impedance, and (d) piezoresistive sensors, such as quartz crystal microbalances and microcantilevers. The last section reports the most recent developments for wearable non-invasive temperature and pH sensors suitable for wound monitoring.


international conference of the ieee engineering in medicine and biology society | 2016

A graphene oxide pH sensor for wound monitoring

Bernardo Melai; Pietro Salvo; Nicola Calisi; L. Moni; A. Bonini; Clara Paoletti; Tommaso Lomonaco; V. Mollica; Roger Fuoco; F. Di Francesco

This article describes the fabrication and characterization of a pH sensor for monitoring the wound status. The pH sensitive layer consists of a graphene oxide (GO) layer obtained by drop-casting 5 μΐ of GO dispersion onto the working electrode of a screen-printed substrate. Sensitivity was 31.8 mV/pH with an accuracy of 0.3 unit of pH. Open-circuit potentiometry was carried out to measure pH in an exudate sample. The GO pH sensor proved to be reliable as the comparison with results obtained from a standard glass electrode pH-meter showed negligible differences (<; 0.09 pH units in the worst case) for measurements performed over a period of 4 days.


international conference of the ieee engineering in medicine and biology society | 2017

A computational approach for the estimation of heart failure patients status using saliva biomarkers

Evanthia E. Tripoliti; Theofilos G. Papadopoulos; Georgia S. Karanasiou; Fanis G. Kalatzis; Yorgos Goletsis; Aris Bechlioulis; Silvia Ghimenti; Tommaso Lomonaco; Francesca Bellagambi; Maria Giovanna Trivella; Roger Fuoco; Mario Marzilli; Maria Chiara Scali; Katerina K. Naka; Abdelhamid Errachid; Dimitrios I. Fotiadis

The aim of this work is to present a computational approach for the estimation of the severity of heart failure (HF) in terms of New York Heart Association (NYHA) class and the characterization of the status of the HF patients, during hospitalization, as acute, progressive or stable. The proposed method employs feature selection and classification techniques. However, it is differentiated from the methods reported in the literature since it exploits information that biomarkers fetch. The method is evaluated on a dataset of 29 patients, through a 10-fold-cross-validation approach. The accuracy is 94 and 77% for the estimation of HF severity and the status of HF patients during hospitalization, respectively.

Collaboration


Dive into the Tommaso Lomonaco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Ruocco

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge