Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Sebastiani is active.

Publication


Featured researches published by L. Sebastiani.


Trees-structure and Function | 2008

Variation in mesophyll anatomy and photosynthetic capacity during leaf development in a deciduous mesophyte fruit tree (Prunus persica) and an evergreen sclerophyllous Mediterranean shrub (Olea europaea)

S. Marchi; Roberto Tognetti; A. Minnocci; M. Borghi; L. Sebastiani

The relative importance that biomechanical and biochemical leaf traits have on photosynthetic capacity would depend on a complex interaction of internal architecture and physiological differences. Changes in photosynthetic capacity on a leaf area basis and anatomical properties during leaf development were studied in a deciduous tree, Prunus persica, and an evergreen shrub, Olea europaea. Photosynthetic capacity increased as leaves approached full expansion. Internal CO2 transfer conductance (gi) correlated with photosynthetic capacity, although, differences between species were only partially explained through structural and anatomical traits of leaves. Expanding leaves preserved a close functional balance in the allocation of resources of photosynthetic component processes. Stomata developed more rapidly in olive than in peach. Mesophyll thickness doubled from initial through final stages of development when it was twice as thick in olive as in peach. The surface area of mesophyll cells exposed to intercellular air spaces per unit leaf area tended to decrease with increasing leaf expansion, whereas, the fraction of mesophyll volume occupied by the intercellular air spaces increased strongly. In the sclerophyllous olive, structural protection of mesophyll cells had priority over efficiency of photochemical mechanisms with respect to the broad-leaved peach. The photosynthetic capacity of these woody plants during leaf development relied greatly on mesophyll properties, more than on leaf mass per area ratio (LMA) or nitrogen (N) allocation. Age-dependent changes in diffusion conductance and photosynthetic capacity affected photosynthetic relationships of peach versus olive foliage, evergreen leaves maturing functionally and structurally a bit earlier than deciduous leaves in the course of adaptation for xeromorphy.


BMC Plant Biology | 2009

Computational annotation of genes differentially expressed along olive fruit development

Giulio Galla; Gianni Barcaccia; Angelo Ramina; S. Collani; Fiammetta Alagna; Luciana Baldoni; Nicolò G. M. Cultrera; Federico Martinelli; L. Sebastiani; P. Tonutti

BackgroundOlea europaea L. is a traditional tree crop of the Mediterranean basin with a worldwide economical high impact. Differently from other fruit tree species, little is known about the physiological and molecular basis of the olive fruit development and a few sequences of genes and gene products are available for olive in public databases. This study deals with the identification of large sets of differentially expressed genes in developing olive fruits and the subsequent computational annotation by means of different software.ResultsmRNA from fruits of the cv. Leccino sampled at three different stages [i.e., initial fruit set (stage 1), completed pit hardening (stage 2) and veraison (stage 3)] was used for the identification of differentially expressed genes putatively involved in main processes along fruit development. Four subtractive hybridization libraries were constructed: forward and reverse between stage 1 and 2 (libraries A and B), and 2 and 3 (libraries C and D). All sequenced clones (1,132 in total) were analyzed through BlastX against non-redundant NCBI databases and about 60% of them showed similarity to known proteins. A total of 89 out of 642 differentially expressed unique sequences was further investigated by Real-Time PCR, showing a validation of the SSH results as high as 69%. Library-specific cDNA repertories were annotated according to the three main vocabularies of the gene ontology (GO): cellular component, biological process and molecular function. BlastX analysis, GO terms mapping and annotation analysis were performed using the Blast2GO software, a research tool designed with the main purpose of enabling GO based data mining on sequence sets for which no GO annotation is yet available. Bioinformatic analysis pointed out a significantly different distribution of the annotated sequences for each GO category, when comparing the three fruit developmental stages. The olive fruit-specific transcriptome dataset was used to query all known KEGG (Kyoto Encyclopaedia of Genes and Genomes) metabolic pathways for characterizing and positioning retrieved EST records. The integration of the olive sequence datasets within the MapMan platform for microarray analysis allowed the identification of specific biosynthetic pathways useful for the definition of key functional categories in time course analyses for gene groups.ConclusionThe bioinformatic annotation of all gene sequences was useful to shed light on metabolic pathways and transcriptional aspects related to carbohydrates, fatty acids, secondary metabolites, transcription factors and hormones as well as response to biotic and abiotic stresses throughout olive drupe development. These results represent a first step toward both functional genomics and systems biology research for understanding the gene functions and regulatory networks in olive fruit growth and ripening.


Journal of Experimental Botany | 2014

Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins

A. Perez-Martin; Chiara Michelazzo; José M. Torres-Ruiz; Jaume Flexas; José E. Fernández; L. Sebastiani; Antonio Diaz-Espejo

Summary In plants with sclerophyll leaves, the response of stomatal and mesophyll conductance to CO2 to water stress and recovery is correlated with the expression of aquaporins and carbonic anhydrase.


Biologia Plantarum | 2006

Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis

Francesca Scebba; Iduna Arduini; L. Ercoli; L. Sebastiani

Plants of Miscanthus sinensis (cv. Giganteus) were grown in hydroponics for three months in nutrient solution with 0, 2.2, 4.4 and 6.6 μM CdNO3. Growth parameters, catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities were analysed in leaves and roots collected after 1-and 3-month exposure. Dry biomass of all miscanthus organs was affected by Cd concentration both after 1-and 3-month exposure. No visible symptoms of Cd toxicity were observed in shoots and rhizomes of plants grown in presence of Cd. In contrast, roots became shorter and thicker and the whole root system more dense and compact already after one month of treatment with 6.6 μM Cd. The lower Cd concentration increased the enzymes activities after 3 months in leaves and only after 1-month in roots, while a decrease in activity was observed at higher Cd concentrations.


Biologia Plantarum | 2001

ACTIVITIES OF ANTIOXIDANT ENZYMES DURING SENESCENCE OF PRUNUS ARMENIACA LEAVES

Francesca Scebba; L. Sebastiani; C. Vitagliano

During the period of senescence of apricot leaves changes in photosynthetic pigment contents and in the activities of some antioxidant enzymes (superoxide dismutase, catalase, peroxidase and ascorbate peroxidase) were analysed. Significant changes in pigment contents were, in most cases, correlated with changes in activities of the antioxidant enzymes. Modifications in superoxide dismutase and catalase isoform patterns were also observed during the progression of senescence. Both enzyme activities and isoenzyme patterns proved to be genotype-dependent.


Antioxidants | 2013

Phenolic Compounds in Apple (Malus x domestica Borkh.): Compounds Characterization and Stability during Postharvest and after Processing

A. Francini; L. Sebastiani

This paper summarizes the information on the occurrence of phenolic compounds in apple (Malus x domestica Borkh.) fruit and juice, with special reference to their health related properties. As phytochemical molecules belonging to polyphenols are numerous, we will focus on the main apples phenolic compounds with special reference to changes induced by apple cultivar, breeding approaches, fruit postharvest and transformation into juice.


Plant Cell Reports | 2013

Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees.

Carlo Sorce; Alessio Giovannelli; L. Sebastiani; Tommaso Anfodillo

The radial growth of plant stem is based on the development of cribro-vascular cambium tissues. It affects the transport efficiency of water, mineral nutrients and photoassimilates and, ultimately, also plant height. The rate of cambial cell divisions for the assembly of new xylem and phloem tissue primordia and the rate of differentiation of the primordia into mature tissues determine the amount of biomass produced and, in the case of woody species, the wood quality. These complex physiological processes proceed at a rate which depends on several factors, acting at various levels: growth regulators, resource availability and environmental factors. Several hormonal signals and, more recently, further regulatory molecules, have been shown to be involved in the induction and maintenance of cambium and the formation of secondary vascular tissues. The control of xylem cell patterning is of particular interest, because it determines the diameter of xylem vessels, which is central to the efficiency of water and nutrient transport from roots to leaves through the stem and may strongly influence the growth in height of the tree. Increasing scientific evidence have proved the role of other hormones in cambial cell activities and the study of the hormonal signals and their crosstalking in cambial cells may foster our understanding of the dynamics of xylogenesis and of the mechanism of vessel size control along the stem. In this article, the role of the hormonal signals involved in the control of cambium and xylem development in trees and their crosstalking are reviewed.


Journal of Agricultural and Food Chemistry | 2013

Flash Thermal Conditioning of Olive Pastes during the Olive Oil Mechanical Extraction Process: Impact on the Structural Modifications of Pastes and Oil Quality

Sonia Esposto; Gianluca Veneziani; Agnese Taticchi; Roberto Selvaggini; Stefania Urbani; Ilona Di Maio; Beatrice Sordini; A. Minnocci; L. Sebastiani; Maurizio Servili

The quality of virgin olive oil (VOO) is strictly related to the concentrations of phenolic and volatile compounds, which are strongly affected by the operative conditions of the VOO mechanical extraction process. The aim of this work is to study the impact of a new technology such as flash thermal conditioning (FTC) on olive paste structural modification and on VOO quality. The evaluation of olive paste structure modification by cryo-scanning electron microscopy (cryo-SEM) showed that the application of FTC after crushing produces significant differences in terms of the breaking of the parenchyma cells and aggregation of oil droplets in comparison to the crushed pastes. The virgin olive oil flash thermal conditioning (VOO-FTC) featured a higher concentration of volatile compounds compared to that in the control, particularly of all saturated and unsaturated aldehydes and esters, whereas the phenolic concentration was higher in VOO obtained from the traditional process (VOO-C).


Plant Biosystems | 2009

Physiological and productive responses of Olea europaea L. cultivars Frantoio and Leccino to a regulated deficit irrigation regime

R. D'Andria; A. Lavini; G. Morelli; L. Sebastiani; Roberto Tognetti

Abstract Olive is a drought-tolerant species and it is known that it responds efficiently to any additional water up to a limit. A field experiment was planned with the following aims: to provide estimates of crop evapotranspiration (ETc) to improve water use efficiency during the growing season; to present guidelines for efficient management of irrigation scheduling; and to characterize the relationship between plant water status and optimum fruit yield. These relationships were monitored during four years by analysing the influence of deficit irrigation strategies on mature modern-trained olive trees of cultivars Frantoio and Leccino. Treatments were a non-irrigated control (rain-fed) and three treatments that received a seasonal water amount equivalent to 33, 66 and 100% of ETc, from the beginning of pit hardening to early fruit veraison. Results of the relationship between leaf water potential and maximum stomatal conductance (Ψpd vs. g smax) showed that the stomatal apparatus in Frantoio was more sensitive to water deficit than that of Leccino. Differences in yield between treatments were mainly related to mean fruit weight, indicating that water availability might have affected growing conditions before flowering or during the early stages of fruit growth rather than later in the summer season. Vegetative development was a function of water available to plants. Frantoio achieved the highest crop production per unit of water consumption. Oil quality was scarcely affected by deficit irrigation. Regulated deficit irrigation of olive trees after pit hardening could be recommended, at least under the experimental conditions of this study. Given the different long-term watering response of Frantoio and Leccino, a cultivar-specific irrigation scheduling is advisable.


Journal of Plant Physiology | 2014

Early responses to cadmium of two poplar clones that differ in stress tolerance.

Daniela Di Baccio; Antonella Castagna; Roberto Tognetti; Annamaria Ranieri; L. Sebastiani

Soil cadmium (Cd) contamination is becoming a matter of great global concern. The identification of plants differentially sensitive to Cd excess is of interest for the selection of genotype adaptive to grow and develop in polluted areas and capable of ameliorating or reducing the negative environmental effects of this toxic metal. The two poplar clones I-214 (Populus×canadensis) and Eridano (Populus deltoides×maximowiczii) are, respectively, tolerant and sensitive to ozone (O3) exposure. Because stress tolerance is mediated by an array of overlapping defence mechanisms, we tested the hypothesis that these two clones differently sensitive to O3 stress factor also exhibit different tolerance to Cd. With this purpose, an outdoor pot experiment was designed to study the responses of I-214 and Eridano to the distribution of different Cd solutions enriched with CdCl2 (0, 50 and 150μM) for 35 days. Changes in leaf area, biomass allocation and Cd uptake, photosynthesis, chlorophyll fluorescence, leaf concentration of nutrients and pigments, hydrogen peroxide (H2O2) and nitric oxide (NO) production and thiol compounds were investigated. The two poplar clones showed similar sensitivity to excess Cd in terms of biomass production, photosynthesis activity and Cd accumulation, though physiological and biochemical traits revealed different defence strategies. In particular, Eridano maintained in any Cd treatment the number of its constitutively wider blade leaves, while the number of I-214 leaves (with lower size) was reduced. H2O2 increased 4.5- and 13-fold in I-214 leaves after the lowest (L) and highest (H) Cd treatments, respectively, revealing the induction of oxidative burst. NO, constitutively higher in I-214 than Eridano, progressively increased in both clones with the enhancement of Cd concentration in the substrate. I-214 showed a more elevated antioxidative capacity (GSH/GSSG) and higher photochemical efficiency of PSII (Fv/Fm) and de-epoxidation degree of xantophylls-cycle (DEPS). The glutathione pool was not affected by Cd treatment in both clones, while non-protein thiols and phytochelatins were reduced at L Cd treatment in I-214. Overall, these two clones presented high adaptability to Cd stress and are both suitable to develop and growth in environments contaminated with this metal, thus being promising for their potential use in phytoremediation programmes.

Collaboration


Dive into the L. Sebastiani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Minnocci

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

C. Vitagliano

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

D. Di Baccio

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

A. Francini

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

F. Camangi

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

A. Stefani

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

T. Bracci

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

S. Marchi

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Matteo Busconi

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge