Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. V. Kolik is active.

Publication


Featured researches published by L. V. Kolik.


Nuclear Fusion | 1997

High power density electron cyclotron experiments in the L2M stellarator

V.V. Abrakov; D. K. Akulina; E.D. Andryukhina; G. M. Batanov; M.S. Berezhetskij; I. S. Danilkin; N. P. Donskaya; O. I. Fedyanin; G. A. Gladkov; S. E. Grebenshchikov; J.H. Harris; N. K. Kharchev; Yu. V. Kholnov; L. V. Kolik; L. M. Kovrizhnykh; N. F. Larionova; A. A. Letunov; K.M. Likin; J.F. Lyon; A. I. Meshcheryakov; Yu.I. Nechaev; A. E. Petrov; K. A. Sarksyan; I.S. Sbitnikova

The results of electron cyclotron heating (ECH) experiments in the L-2M stellarator are presented. The main goal of the experiments is to investigate the physics of ECH and of plasma confinement at high values of the volume heating power density. A current free plasma is produced and heated by extraordinary waves at the second harmonic of the electron cyclotron frequency ( omega 0=2 omega ce). The experimental results are compared with the empirical LHD scaling and with numerical simulations of plasma confinement and heating processes based on neoclassical theory using the full matrix of transport coefficients, including some additional anomalous corrections


Plasma Physics Reports | 2013

Backscattering of gyrotron radiation and short-wavelength turbulence during electron cyclotron resonance plasma heating in the L-2M stellarator

G. M. Batanov; V. D. Borzosekov; L. M. Kovrizhnykh; L. V. Kolik; E. M. Konchekov; D. V. Malakhov; A. E. Petrov; K. A. Sarksyan; N. N. Skvortsova; V. D. Stepakhin; N. K. Kharchev

Backscattering of gyrotron radiation (θ = π) by short-wavelength density fluctuations (k⊥ = 30 cm−1) in the plasma of the L-2M stellarator was studied under conditions of electron cyclotron resonance (ECR) plasma heating at the second harmonic of the electron gyrofrequency (75 GHz). The scattering of the O-wave emerging due to the splitting of the linearly polarized gyrotron radiation into the X- and O-waves was analyzed. The signal obtained after homodyne detection of scattered radiation is a result of interference of the reference signal, the quasi-steady component, and the fast oscillating component. The coefficients of reflection of the quasi-steady component, R=2(Y), and fast oscillating component, R∼2(Y), of scattered radiation are estimated. The growth of the R∼2(Y) coefficient from 3.7 × 10−4 to 5.2 × 10−4 with increasing ECR heating power from 190 to 430 kW is found to correlate with the decrease in the energy lifetime from 1.9 to 1.46 ms. The relative density of short-wavelength fluctuations is estimated to be 〈n∼2〉/〈ne2〉 = 3 × 10−7. It is shown that the frequencies of short-wavelength fluctuations are in the range 10–150 kHz. The recorded short-wavelength fluctuations can be interpreted as structural turbulence, the energy of which comprises ∼10% of the total fluctuations energy. Simulations of transport processes show that neoclassical heat fluxes are much smaller than anomalous ones. It is suggested that short-wavelength turbulence plays a decisive role in the anomalous heat transport.


Technical Physics | 2001

Response of a gyrotron to small-amplitude low-frequency-modulated microwaves reflected from a plasma

G. M. Batanov; L. V. Kolik; Yu. V. Novozhilova; M. I. Petelin; A. E. Petrov; Karen A. Sarksyan; N. N. Skvortsova; N. K. Kharchev

Experiments in the L-2M stellarator revealed the intense noise modulation of the gyrotron power and the change in its mean value under the action of the noise modulation of radiation reflected from the plasma column. The effect observed is explained in terms of the resonant locking of the gyrotron self-oscillations due to wave reflection from the fluctuating plasma load.


Plasma Physics and Controlled Fusion | 2010

Effect of ECRH regime on characteristics of short-wave turbulence in plasma of the L-2M stellarator

N. N. Skvortsova; D. K. Akulina; G. M. Batanov; N. K. Kharchev; L. V. Kolik; L. M. Kovrizhnykh; A. A. Letunov; V. P. Logvinenko; D. V. Malakhov; A. E. Petrov; A. A. Pshenichnikov; Karen A. Sarksyan; G. S. Voronov

This paper reports on studies of short-wave turbulence in the plasma of the L-2M stellarator under markedly different conditions: with doubling the ECR heating power (100 and 200 kW) and with restricting the plasma radius by a sector limiter. The role of such short-wave turbulence in anomalous transport can appear important for conditions of a thermonuclear reactor. Experiments were carried out in a basic magnetic configuration of the L-2M stellarator during ECRH at the second harmonic of the electron gyrofrequency (75.3 GHz) at average electron densities of (1.5–1.7) × 1013 cm−3. The energy confinement time was ~3.5 ms at P0 = 100 kW and was reduced to ~2 ms at P0 = 200 kW. When the limiter was introduced inside the plasma to a depth of 2 cm from the last closed flux surface, τE decreased by a factor of 1.3–1.4. Plasma density fluctuations were measured from the scattering of gyrotron radiation at the second harmonic of operating frequency (~150 GHz). A quasioptical receiving system allowed measurements of scattered radiation from plasma regions r/a ≤ 0.6 at scattering angles π/4 ≤ Θ ≤ π/2 (24 cm−1 ≤ k⊥ ≤ 44 cm−1). The short-wave turbulence was studied for two radial positions of the scattering region: r/a = 0.3–0.4 and r/a = 0.5–0.6. Short-wave turbulence exhibits features of strong plasma turbulence. It is experimentally established that a change in the energy confinement time in the L-2M stellarator correlates with the level of short-wave turbulence.


Plasma Physics Reports | 2005

Effect of Vacuum Chamber Boronization on the Plasma Parameters in the L-2M Stellarator

A. I. Meshcheryakov; D. K. Akulina; G. M. Batanov; M. S. Berezhetskii; G. S. Voronov; G. A. Gladkov; S. E. Grebenshchikov; V. A. Grinchuk; I. A. Grishina; L. V. Kolik; N. F. Larionova; A. A. Letunov; V. P. Logvinenko; A. E. Petrov; A. A. Pshenichnikov; G. A. Ryabenko; K. A. Sarksyan; N. N. Skvortsova; O. I. Fedyanin; N. K. Kharchev; Yu. V. Khol’nov; V. M. Sharapov

After boronization of the vacuum chamber of the L-2M stellarator, radiative losses from ohmically and ECR heated plasmas were reduced by a factor of 3–4. Under these conditions, radiative losses in the ECRH regime comprise only 10–15% of the input microwave power. Some effects have been detected that were not observed previously: a substantial increase in the gradient of the electron temperature near the separatrix, a preferentially outward-directed radial turbulent particle flux (both throughout the discharge phase and from shot to shot), and a longer (by a factor of 2–3) duration of the plasma cooling phase.


Plasma Physics Reports | 2013

Application of microwave discharge for the synthesis of TiB2 and BN nano- and microcrystals in a mixture of Ti-B powders in a nitrogen atmosphere

G. M. Batanov; N. K. Berezhetskaya; V. D. Borzosekov; L D Iskhakova; L. V. Kolik; E. M. Konchekov; A. A. Letunov; D. V. Malakhov; Filipp O. Milovich; Ekaterina A. Obraztsova; Elena D. Obraztsova; A. E. Petrov; K. A. Sarksyan; N. N. Skvortsova; V. D. Stepakhin; N. K. Kharchev

Synthesis of titanium diboride and boron nitride nano- and microcrystals by means of a pulsed microwave discharge in a mixture of Ti-B powders in a nitrogen atmosphere is considered. For this purpose, a new type of reactor with a free surface of the powder mixture was used. The reactor design permits free expansion of the reaction products into the reactor volume and their deposition on the reactor walls. Conditions for the synthesis of TiB2 and BN compounds were studied as functions of the energy input in the discharge, the powder component ratio, the rate of the nitrogen flow through the reactor, and the structure and phase composition of the compounds deposited on the reactor walls. The synthesis of boron nitride and titanium diboride in crystal structures is proven. An important role in the process of synthesis is played by the heating of the mixture due to the titanium diboride synthesis reaction, its behavior in the bulk of the reactor, and the titanium concentration in the powder mixture. It is also found that, as the number of discharges in the bulk of the reactor increases, a dust cloud forms. The luminescence of this cloud indicates that the initiated discharge proceeds not only on the powder surface and in the powder bulk, but also in the reactor volume.


Plasma Physics Reports | 2013

A new MIG-3 gyrotron complex for creation and heating of plasma in the L-2M stellarator and the first experimental results

G. M. Batanov; V. I. Belousov; Yu. F. Bondar; V. D. Borzosekov; D. G. Vasil’kov; S. E. Grebenshchikov; I. A. Ivannikov; L. V. Kolik; E. M. Konchekov; D. V. Malakhov; N. V. Matveev; A. I. Meshcheryakov; A. E. Petrov; K. A. Sarksyan; N. N. Skvortsova; V. D. Stepakhin; N. K. Kharchev; Yu. V. Khol’nov; E. M. Tai

The characteristics of a new MIG-3 gyrotron complex for creating and heating plasma in the L-2M stellarator are presented. The first experimental results using the complex are reported. The complex consists of two three-electrode GYCOM gyrotrons of the new generation with electron beam energy recuperation, a high-voltage modulator that enables both separate and simultaneous operation of the two gyrotrons, and a control/data-recording unit. The total specific power to be inserted into plasma reaches 5 MW/m3 when both gyrotrons in operation.


Review of Scientific Instruments | 2013

Optimization of operation of a three-electrode gyrotron with the use of a flow-type calorimeter

N. K. Kharchev; G. M. Batanov; L. V. Kolik; Dmitrii V. Malakhov; Aleksandr Ye. Petrov; Karen A. Sarksyan; Nina N. Skvortsova; V. D. Stepakhin; Vladimir I. Belousov; Sergei A. Malygin; Yevgenii M. Tai

Results are presented for measurements of microwave power of the Borets-75/0.8 gyrotron with recovery of residual electron energy, which were performed by a flow-type calorimeter. This gyrotron is a part of the ECR plasma heating complex put into operation in 2010 at the L-2M stellarator. The new calorimeter is capable of measuring microwave power up to 0.5 MW. Monitoring of the microwave power makes it possible to control the parameters of the gyrotron power supply unit (its voltage and current) and the magnetic field of the cryomagnet in order to optimize the gyrotron operation and arrive at maximum efficiency.


Plasma Physics Reports | 2008

Stability and variations of plasma parameters in the L-2M stellarator during excitation of the induction current in the regime of ECR plasma heating

D. K. Akulina; G. M. Batanov; M. S. Berezhetskiĭ; D. G. Vasil’kov; I. Yu. Vafin; G. S. Voronov; E. V. Voronova; G. A. Gladkov; S. E. Grebenshchikov; I. A. Grishina; A. V. Knyazev; L. M. Kovrizhnykh; L. V. Kolik; A. B. Kuznetsov; N. F. Larionova; A. A. Letunov; V. P. Logvinenko; N. I. Malykh; A. I. Meshcheryakov; Yu. I. Nechaev; A. E. Petrov; A. A. Pshenichnikov; V. V. Saenko; K. A. Sarksyan; N. N. Skvortsova; O. I. Fedyanin; N. K. Kharchev; Yu. V. Khol’nov; S. V. Shchepetov

Results are presented from experimental studies of variations in the plasma parameters during the excitation of a multiaxis magnetic configuration by the induction current (up to 17 kA) in the basic magnetic configuration of the L-2M stellarator in the regime of ECR heating at a microwave power of ∼200 kW (∼1 MW m−3) and an average plasma density of (1–2) × 1019 m−3. The current direction was chosen to reduce the net rotational transform (the so-called “negative“ current). The current was high enough for the rotational transform to change its sign inside the plasma column. Computer simulations of the L-2M magnetic structure showed that the surface with a zero rotational transform is topologically unstable and gives rise to magnetic islands, i.e., to a multiaxis magnetic configuration. Magnetic measurements showed that, at negative currents above 10 kA, intense bursts of MHD oscillations with a clearly defined toroidal mode number n = 0 were observed in the frequency range of several kilohertz. Unfortunately, the experimental data are insufficient to draw the final conclusion on the transverse structure of these oscillations. The radial temperature profiles along the stellarator major radius in the equatorial plane were studied. It is found that the electron temperature decreases by a factor of 1.3 in the plasma core (r/a ≤ 0.6) and that the temperature jump is retained near the boundary. A change in turbulent fluctuations of the plasma density during the excitation of a negative current was studied using wave scattering diagnostics. It is found that the probability density function of the increments of fluctuations in the plasma core differs from a Gaussian distribution. The measured distribution is heavy-tailed and broadens in the presence of the current. It is found that the spectrum of turbulent fluctuations and their Doppler shift near the plasma boundary are nonuniform in the radial direction. This may be attributed to the shear of the poloidal velocity. The experimental results indicate that the formation of regions with a zero rotational transform in the plasma core somewhat intensifies plasma transport.


Journal of Nanophotonics | 2016

Microwave method for synthesis of micro- and nanostructures with controllable composition during gyrotron discharge

G. M. Batanov; V. D. Borzosekov; Dmitri Golberg; L D Iskhakova; L. V. Kolik; E. M. Konchekov; Nikolai K. Kharchev; A. A. Letunov; D. V. Malakhov; Filipp O. Milovich; Ekaterina A. Obraztsova; A. E. Petrov; Irina G. Ryabikina; Karen A. Sarksian; V. D. Stepakhin; Nina N. Skvortsova

Abstract. We introduce an approach toward the synthesis of micro- and nanostructures under nonequilibrium microwave discharges within metal–dielectric powder mixtures induced by powerful microwave gyrotron radiation. A new plasma-chemical reactor capable of sustaining a discharge regime with an afterglow phase of an order of magnitude longer than the gyrotron pulse duration was constructed for these experiments. In the nonequilibrium conditions of such a discharge, plasma-induced exothermic chemical reactions leading to the synthesis of various compounds were initiated. The synthesized structures were deposited on the reactor walls and on the impurity particles within the reactor. This method was tested under gyrotron-initiated discharges within various metal–dielectric powder mixtures of titanium–boron, molybdenum–boron, titanium–silicon–boron, molybdenum–boron nitride, molybdenum–tungsten–boron nitride, and so on. Depending on the powder mixture composition, reactor atmosphere, and other parameters, micro- and nanosized particles of boron nitride, titanium diboride, molybdenum boride, titanium boride, molybdenum, and molybdenum oxide, were synthesized, detected, and analyzed.

Collaboration


Dive into the L. V. Kolik's collaboration.

Top Co-Authors

Avatar

G. M. Batanov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

N. K. Kharchev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. E. Petrov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

K. A. Sarksyan

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

N. N. Skvortsova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

D. V. Malakhov

Russian National Research Medical University

View shared research outputs
Top Co-Authors

Avatar

V. D. Stepakhin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V. D. Borzosekov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. M. Konchekov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge