L. Vitale
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. Vitale.
Plant Biology | 2008
C. Arena; L. Vitale; A. Virzo De Santo
We assessed the contribution of leaf movements to PSII photoprotection against high light and temperature in Robinia pseudoacacia. Gas exchange and chlorophyll a fluorescence measurements were performed during the day at 10:00, 12:00, 15:00 and 18:00 hours on leaves where paraheliotropic movements were restrained (restrained leaves, RL) and on control unrestrained leaves (UL). RL showed a strong decrease of net photosynthesis (A(n)), stomatal conductance (g(sH2O)), quantum yield of electron transport (PhiPSII), percentage of photosynthesis inhibited by O2 (IPO) and photochemical quenching (q(P)) in the course of the day, whereas, a significant increase in C(i)/C(a) and NPQ was observed. Contrary to RL, UL had higher photosynthetic performance that was maintained at elevated levels throughout the day. In the late afternoon, A(n), g(sH2O), PhiPSII and q(P) of RL showed a tendency to recovery, as compared to 15:00 hours, even if the values remained lower than those measured at 10:00 hours and in UL. In addition, contrary to UL, no recovery was found in F(v)/F(m) at the end of the study period in RL. Data presented suggest that in R. pseudoacacia, leaf movements, by reducing light interception, represent an efficient, fast and reversible strategy to overcome environmental stresses such as high light and temperature. Moreover, paraheliotropism was able to protect photosystems, avoiding photoinhibitory damage, leading to a carbon gain for the plant.
Plant Biosystems | 2012
L. Vitale; C. Arena; A. Virzo De Santo
Abstract This research aimed to investigate the physiological strategies that allow Phillyrea angustifolia, a sclerophyllous shrub widespread in the Mediterranean maquis, to cope successfully with the most stressful conditions of the Mediterranean climate i.e. summer drought and winter cold. Gas exchange and chlorophyll a fluorescence measurements as well as pigment content determinations were performed periodically throughout one whole year (spring 2004–spring 2005) on plants growing outdoor in the Botanical Garden of the Naples University. In June and July 2004 and in February 2005 the light-saturated net photosynthetic rate (P N) and stomatal conductance (gH2O) were lower compared to May and October 2004. Carboxylation rate (v c) was negatively affected by summer drought and low temperature. The quantum yield (ΦPSII) and maximum photochemical efficiency of PSII (F v/F m) significantly declined in February. All monitored parameters increased after each stressful period. The highest carotenoid content was detected in July whereas total pigment content was lower both in July and in February as compared to May and October, respectively. The photosynthetic apparatus of P. angustifolia is able to cope with summer drought and winter cold by different strategies: in summer, efficient stomatal control reduces water loss whereas in winter, PSII efficiency is down-regulated to avoid irreversible damage.
Plant Biosystems | 2008
C. Arena; L. Vitale; A. Virzo De Santo
Abstract Photosynthesis and photoprotective mechanisms were investigated in the field on Laurus nobilis L. and Quercus ilex L. leaves exposed to summer drought (July) and winter cold (February) conditions compared with no-stress conditions (May). In July, net photosynthetic rate (A) and stomatal conductance (g s) decreased significantly compared with May in both species; conversely the highest ETR/A ratio and no difference in non-photochemical quenching (NPQ) was observed. In February A, g s and ETR/A declined compared with May but the highest NPQ were found in both species. Our data suggest that during summer, an increase of photochemical alternative pathways to carbon reduction, were able to effectively protect the photosynthetic apparatus under drought. In winter, the thermal dissipation of excess absorbed light constitutes the main safety valve for the photosynthetic apparatus.
Photosynthetica | 2005
C. Arena; L. Vitale; A. Virzo De Santo
Quercus ilex plants grown on two different substrates, sand soil (C) and compost (CG), were exposed to photosynthetic photon flux densities (PPFD) at 390 and 800 µmol(CO2) mol−1 (C390 and C800). At C800 both C and CG plants showed a significant increase of net photosynthetic rate (PN) and electron transport rate (ETR) in response to PPFD increase as compared to C390. In addition, at C800 lower non-photochemical quenching (NPQ) values were observed. The differences between C390 and C800 were related to PPFD. The higher PN and ETR and the lower dissipative processes found in CG plants at both CO2 concentrations as compared to C plants suggest that substrate influences significantly photosynthetic response of Q. ilex plants. Moreover, short-term exposures at elevated CO2 decreased nitrate photo-assimilation in leaves independently from substrate of growth.
Water Air and Soil Pollution | 2014
C. Arena; Anna De Maio; Flavia De Nicola; Lucia Santorufo; L. Vitale; Giulia Maisto
Plant physiological performance may be endangered in contaminated urban areas. Metal and polycyclic aromatic hydrocarbon (PAH) content in Quercus ilex leaves mainly reflects air pollution, being for these pollutants traceable the translocation from soil. In this work, in a field study, the responses at structural and functional level of Q. ilex leaves to metal and PAH pollution were assessed by an integrated approach. At this purpose, morphological (functional traits), biochemical (pigment content, antioxidant capacity, and PARP activity), and physiological (partitioning of absorbed light in the photosynthetic process) analyses were performed in leaves collected at urban parks and roadsides. Compared to the leaves of the urban parks, those sampled at the roadsides showed higher metal and PAH accumulation. The most contaminated leaves showed smaller leaf sizes and lower relative water and pigment content, as well as a lower photochemistry. In this circumstance, the excess of absorbed light at PSII was mainly dissipated via non-regulated than heat processes. On the basis of the biochemical analyses, the occurrence of DNA damages in contaminated Q. ilex leaves may be hypothesized.
Plant Biosystems | 2011
L. Vitale; C. Arena; P. Carillo; P. di Tommasi; B. Mesolella; F. Nacca; A. Virzo De Santo; Amodio Fuggi; Vincenzo Magliulo
Abstract Net ecosystem exchange (NEE), leaf gas exchange and biochemical traits were investigated in an irrigated maize crop grown under Mediterranean conditions. Sub-optimal irrigation water supply determined a drought stress during the early vegetative growth stage (45–49 days after swing) that decreased NEE. Drought, in the late vegetative stage, also caused a reduction of leaf gas exchange. In the latter period, proline, glycine and serine, as well as sucrose leaf contents increased, while starch, proteins and glucose contents decreased. In the early reproductive stage, the crop experienced a longer dry spell that induced a reduction in canopy as well as in leaf gas exchanges, while protein and free amino acid contents decreased with respect to the late vegetative stage. Both ecophysiological and biochemical data demonstrate a good capacity of cultivar Pioneer PR32D99 to endure the environmental stress, related to Mediterranean summer drought, leading to an elevated dry matter yield at harvest. Photosynthetic apparatus appeared fairly resistant to soil water shortage due likely to the increased leaf content of organic solutes, such as amino acids and soluble sugars.
Science of The Total Environment | 2010
Giulia Maisto; A. De Marco; F De Nicola; C. Arena; L. Vitale; A. Virzo De Santo
This study investigated whether overlaying organic wastes directly on limestone debris allowed the growth of sclerophyllous shrubs; the aim was to explore the feasibility of rehabilitation of sites destroyed by quarrying activity. In an open air mesocosm experiment two types of organic material were compared: compost from municipal wastes (C) and a mixture of compost and poultry manure added with wheat husk (C-PW). Mesocosms were pots (1m diameter, 60cm height) containing limestone debris covered by the organic material. Seven mesocosms with C and seven mesocosms with C-PW were planted with sclerophyllous shrubs (Laurus nobilis L., Phillyrea angustifolia L. and Quercus ilex L.). The substrates were characterised in terms of chemical and physical parameters, microbial activity and biomass, and total and active fungal biomass. Shrub photosynthetic performance and growth were evaluated. Over the whole experimental period, organic matter mineralization was higher in C-PW. Microbial biomass and respiration were higher in C-PW than in C but after one year no statistically significant difference between the two substrates occurred. Fungal mycelium was a minor fraction of the microbial community in both types of substrates and decreased dramatically after setting up the mesocosms. The metabolic quotient was higher in C suggesting more stressful conditions as compared to C-PW. Both substrates allowed shrub growth; however photosynthetic rates and the increase of plant size were higher on C-PW than on C. The results demonstrated that, as compared to only compost, the mixture of compost and poultry manure added with wheat husk is a substrate more suitable to both microbial processes and plant growth. Therefore a plan to revegetate quarries based on the use of organic wastes as a substrate for sclerophyllous shrubs could be feasible and, what is more, helpful to mitigate the environmental impact of organic wastes disposal.
Acta Physiologiae Plantarum | 2009
L. Vitale; Paul Di Tommasi; C. Arena; Michele Riondino; Annachiara Forte; Angelo Verlotta; Angelo Fierro; Amalia Virzo De Santo; Amodio Fuggi; Vincenzo Magliulo
The effect of water shortage on growth and gas exchange of maize grown on sandy soil (SS) and clay soil was studied. The lower soil water content in the SS during vegetative growth stages did not affect plant height, above-ground biomass, and leaf area index (LAI). LAI reduction was observed on the SS during the reproductive stage due to early leaf senescence. Canopy and leaf gas exchanges, measured by eddy correlation technique and by a portable photosynthetic system, respectively, were affected by water stress and a greater reduction in net photosynthetic rate (AN) and stomatal conductance (gs) was observed on SS. Chlorophyll and carotenoids content was not affected by water shortage in either condition. Results support two main conclusions: (1) leaf photosynthetic capacity was unaffected by water stress, and (2) maize effectively endured water shortage during the vegetative growth stage.
International Journal of Biometeorology | 2016
L. Vitale; Paul Di Tommasi; Guido D’Urso; Vincenzo Magliulo
The eddy correlation technique was used to investigate the influence of biophysical variables and crop phenological phases on the behaviour of ecosystem carbon fluxes of a maize crop, in two contrasting growing seasons. In 2009, the reduced water supply during the early growing stage limited leaf area expansion, thus negatively affecting canopy photosynthesis. The variability of gross primary production (GPP) and ecosystem respiration (Reco) was mainly explained by seasonal variation of leaf area index (LAI). The seasonal variation of Reco was positively influenced by soil temperatures (Tsoil) in 2008 but not in 2009. In 2008, a contribution of both autotrophic and heterotrophic components to total Reco could be hypothesized, while during 2009, autotrophic respiration is supposed to be the most important component. Crop phenological phases affected the response of ecosystem fluxes to biophysical drivers.
Photosynthetica | 2011
C. Arena; L. Vitale; A. Virzo De Santo
This work aimed to evaluate if gas exchange and PSII photochemical activity in maize are affected by different irradiance levels during short-term exposure to elevated CO2. For this purpose gas exchange and chlorophyll a fluorescence were measured on maize plants grown at ambient CO2 concentration (control CO2) and exposed for 4 h to short-term treatments at 800 μmol(CO2) mol−1 (high CO2) at a photosynthetic photon flux density (PPFD) of either 1,000 μmol m−2 s−1 (control light) or 1,900 μmol m−2 s−1 (high light). At control light, high-CO2 leaves showed a significant decrease of net photosynthetic rate (PN) and a rise in the ratio of intercellular to ambient CO2 concentration (Ci/Ca) and water-use efficiency (WUE) compared to control CO2 leaves. No difference between CO2 concentrations for PSII effective photochemistry (ΦPSII), photochemical quenching (qp) and nonphotochemical quenching (NPQ) was detected. Under high light, high-CO2 leaves did not differ in PN, Ci/Ca, ΦPSII and NPQ, but showed an increase of WUE. These results suggest that at control light photosynthetic apparatus is negatively affected by high CO2 concentration in terms of carbon gain by limitations in photosynthetic dark reaction rather than in photochemistry. At high light, the elevated CO2 concentration did not promote an increase of photosynthesis and photochemistry but only an improvement of water balance due to increased WUE.