Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. W. Kamp is active.

Publication


Featured researches published by L. W. Kamp.


Science | 1996

Near-Infrared Spectroscopy and Spectral Mapping of Jupiter and the Galilean Satellites: Results from Galileo's Initial Orbit

Robert W. Carlson; William D. Smythe; Kevin H. Baines; E. Barbinis; Kris J. Becker; R. Burns; Simon B. Calcutt; Wendy M. Calvin; Roger N. Clark; G. E. Danielson; Ashley Gerard Davies; P. Drossart; Th. Encrenaz; Fraser P. Fanale; James Charles Granahan; Gary B. Hansen; P. Herrera; Charles Arthur Hibbitts; J. Hui; Patrick G. J. Irwin; Torrence V. Johnson; L. W. Kamp; Hugh H. Kieffer; F. Leader; E. Lellouch; Rosaly Lopes-Gautier; Dennis L. Matson; Thomas B. McCord; R. Mehlman; A. Ocampo

The Near Infrared Mapping Spectrometer performed spectral studies of Jupiter and the Galilean satellites during the June 1996 perijove pass of the Galileo spacecraft. Spectra for a 5-micrometer hot spot on Jupiter are consistent with the absence of a significant water cloud above 8 bars and with a depletion of water compared to that predicted for solar composition, corroborating results from the Galileo probe. Great Red Spot (GRS) spectral images show that parts of this feature extend upward to 240 millibars, although considerable altitude-dependent structure is found within it. A ring of dense clouds surrounds the GRS and is lower than it by 3 to 7 kilometers. Spectra of Callisto and Ganymede reveal a feature at 4.25 micrometers, attributed to the presence of hydrated minerals or possibly carbon dioxide on their surfaces. Spectra of Europas high latitudes imply that fine-grained water frost overlies larger grains. Several active volcanic regions were found on Io, with temperatures of 420 to 620 kelvin and projected areas of 5 to 70 square kilometers.


Science | 1991

Galileo infrared imaging spectroscopy measurements at Venus

Robert W. Carlson; Kevin H. Baines; Th. Encrenaz; F. W. Taylor; P. Drossart; L. W. Kamp; James B. Pollack; E. Lellouch; A.D. Collard; Simon B. Calcutt; David Harry Grinspoon; Paul R. Weissman; William D. Smythe; A. Ocampo; G. E. Danielson; Fraser P. Fanale; Torrence V. Johnson; Hugh H. Kieffer; Dennis L. Matson; Thomas B. McCord; L. A. Soderblom

During the 1990 Galileo Venus flyby, the Near Infaied Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substanmial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.


Journal of Geophysical Research | 2001

Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io

Ashley Gerard Davies; Laszlo P. Keszthelyi; David A. Williams; Cynthia B. Phillips; Alfred S. McEwen; Rosaly M. C. Lopes; William D. Smythe; L. W. Kamp; Laurence A. Soderblom; Robert W. Carlson

The Galileo spacecraft has been periodically monitoring volcanic activity on Io since June 1996, making it possible to chart the evolution of individual eruptions. We present results of coanalysis of Near-Infrared Mapping Spectrometer (NIMS) and solid-state imaging (SSI) data of eruptions at Pele and Pillan, especially from a particularly illuminating data set consisting of mutually constraining, near-simultaneous NIMS and SSI observations obtained during orbit C9 in June 1997. The observed thermal signature from each hot spot, and the way in which the thermal signature changes with time, tightly constrains the possible styles of eruption. Pele and Pillan have very different eruption styles. From September 1996 through May 1999, Pele demonstrates an almost constant total thermal output, with thermal emission spectra indicative of a long-lived, active lava lake. The NIMS Pillan data exhibit the thermal signature of a “Pillanian” eruption style, a large, vigorous eruption with associated open channel, or sheet flows, producing an extensive flow field by orbit C10 in September 1997. The high mass eruption rate, high liquidus temperature (at least 1870 K) eruption at Pillan is the best candidate so far for an active ultramafic (magnesium-rich, “komatiitic”) flow on Io, a style of eruption never before witnessed. The thermal output per unit area from Pillan is, however, consistent with the emplacement of large, open-channel flows. Magma temperature at Pele is ≥1600 K. If the magma temperature is 1600 K, it suggests a komatiitic-basalt composition. The power output from Pele is indicative of a magma volumetric eruption rate of ∼250 to 340 m3 s−1. Although the Pele lava lake is considerably larger than its terrestrial counterparts, the power and mass fluxes per unit area are similar to active terrestrial lava lakes.


Geophysical Research Letters | 1997

The distribution of sulfur dioxide and other infrared absorbers on the surface of Io

Robert W. Carlson; William D. Smythe; Rosaly Lopes-Gautier; A. G. Davies; L. W. Kamp; Joel A. Mosher; L. A. Soderblom; F. Leader; R. Mehlman; Roger N. Clark; Fraser P. Fanale

The Galileo Near Infrared Mapping Spectrometer was used to investigate the distribution and properties of sulfur dioxide over the surface of Io, and qualitative results for the anti-Jove hemisphere are presented here. SO2, existing as a frost, is found almost everywhere, but with spatially variable concentration. The exceptions are volcanic hot spots, where high surface temperatures promote rapid vaporization and can produce SO2-free areas. The pervasive frost, if fully covering the cold surface, has characteristic grain sizes of 30 to 100 µm, or greater. Regions of greater sulfur dioxide concentrations are found. The equatorial Colchis Regio area exhibits extensive snowfields with large particles (250 to 500 µm diameter, or greater) beneath smaller particles. A weak feature at 3.15 µm is observed and is perhaps due to hydroxides, hydrates, or water. A broad absorption in the 1 µm region, which could be caused by iron-containing minerals, shows a concentration in Ios southern polar region, with an absence in the Pele plume deposition ring.


Planetary and Space Science | 1993

Probing Venus's cloud structure with Galileo NIMS

David Harry Grinspoon; Jordan Pollack; B.R. Sitton; Robert W. Carlson; L. W. Kamp; Kevin H. Baines; Th. Encrenaz; F. W. Taylor

The spectral image cubes obtained by the Near-Infrared Mapping Spectrometer (NIMS) on Galileo as it flew by Venus have been analyzed to constrain the vertical structure of the clouds, the nature of the aerosol particles, and the location and particle properties of the opacity variations responsible for high contrast features observed in the near-infrared windows at 1.7 and 2.3 μm. A radiative transfer program was used to simulate mid-latitude curves of limb darkening at 3.7 μm. Best-fit models to these curves demonstrate that the upper clouds are dominated by mode 2 particles (r = 1.0 μm), with a contribution of ≈15% of opacity from mode 1 particles (r = 0.3 μm). The low-latitude upper cloud is well represented by a dual scale-height model, with a particle scale height of ≈1 km from an altitude of 61–63 km, and a scale height of ≈ 6 km above this, up to the level where τ = 1 at approximately 71 km. This model also successfully simulates limb-darkening curves at 11.5 μm from the Pioneer Venus Orbiter Infrared Radiometer. Successful simulations of correlation plots of 1.7 vs 2.3 μm intensities reveal that mode 3 particles (r = 3.65 μm) represent the dominant source of opacity in the lower and middle clouds, and that variation in total cloud opacity reflects chiefly the addition and removal of mode 3 particles near the cloud base. We find that the full spectrum of brightnesses at 1.7 and 2.3 μm implies that the total cloud optical depth varies from ≈ 25 to ≈ 40.


Planetary and Space Science | 1993

VARIATIONS IN VENUS CLOUD-PARTICLE PROPERTIES: A NEW VIEW OF VENUS'S CLOUD MORPHOLOGY AS OBSERVED BY THE GALILEO NEAR INFRARED MAPPING SPECTROMETER

Robert W. Carlson; L. W. Kamp; Kevin H. Baines; Jordan Pollack; David Harry Grinspoon; Th. Encrenaz; P. Drossart; F. W. Taylor

Using Venus nightside data obtained by the Galileo Near-Infrared Mapping Spectrometer, we have studied the correlation of 1.74 and 2.30 μm radiation which is transmitted through the clouds. Since the scattering and absorption properties of the cloud particles are different at these two wavelengths, one can distinguish between abundance variations and variations in the properties of the cloud particles themselves. The correlation of intensities shows a clustering of data into five distinct branches. Using radiative transfer calculations, we interpret these branches as regions of distinct but different mixes of Mode 2′ and 3 particles. The data and calculations indicate large differences in these modal ratios, the active cloud regions varying in content from nearly pure Mode 2′ particles to almost wholly Mode 3. The spatial distribution of these branches shows large scale sizes and both hemispheric symmetries and asymmetries. High-latitude concentrations of large particles are seen in both hemispheres and there is banded structure of small particles seen in both the North and South which may be related. The mean particle size in the Northern Hemisphere is greater than found in the South. If these different branch regions are due to mixing of vertically stratified source regions (e.g. photochemical and condensation source mechanisms), then the mixing must be coherent over very large spatial scales.


Geophysical Research Letters | 1997

Hot spots on Io: Initial results from Galileo's near infrared mapping spectrometer

Rosaly Lopes-Gautier; A. G. Davies; Robert W. Carlson; William D. Smythe; L. W. Kamp; L. A. Soderblom; F. Leader; R. Mehlman

The Near-Infrared Mapping Spectrometer on Galileo has monitored the volcanic activity on Io since June 28, 1996. This paper presents preliminary analysis of NIMS thermal data for the first four orbits of the Galileo mission. NIMS has detected 18 new hot spots and 12 others which were previously known to be active. The distribution of the hot spots on Ios surface may not be random, as hot spots surround the two bright, SO2-rich regions of Bosphorus Regio and Colchis Regio. Most hot spots seem to be persistently active from orbit to orbit and 10 of those detected were active in 1979 during the Voyager encounters. We report the distribution of hot spot temperatures and find that they are consistent with silicate volcanism.


Planetary and Space Science | 1993

Latitudinal distribution of carbon monoxide in the deep atmosphere of Venus

A.D. Collard; F. W. Taylor; Simon B. Calcutt; Robert W. Carlson; L. W. Kamp; Kevin H. Baines; Th. Encrenaz; P. Drossart; E. Lellouch; B. Bézard

Abstract A large number of i.r. spectra of Venus was obtained using the Near-Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft, during the February 1990 encounter. Preliminary results show an apparent increase in the tropospheric CO volume mixing ratio (vmr) in the northern polar region. Other possible explanations of the observations are examined and rejected and an increase of the CO abundance north of 47°N of (35 ± 15)% is inferred. Some possible causes of this enhancement are suggested.


Journal of Geophysical Research | 1998

Analysis of Jupiter north equatorial belt hot spots in the 4–5 μm range from Galileo/near-infrared mapping spectrometer observations: Measurements of cloud opacity, water, and ammonia

M. Roos-Serote; P. Drossart; Thérèse Encrenaz; E. Lellouch; Robert W. Carlson; Kevin H. Baines; L. W. Kamp; R. Mehlman; Glenn S. Orton; Simon B. Calcutt; P. G. J. Irwin; F. W. Taylor; Andrew Livingstone Weir

This paper presents the analysis of hot spot observations in the Jovian North Equatorial Belt obtained with the near-infrared mapping spectrometer (NIMS) instrument on the Galileo spacecraft. The data were acquired during the closest approach sequences between June 1996 and April 1997. We focus on the spectral window between 4.5 and 5.2 μm determining the cloud opacity above 2 bar, the water vapor relative humidity, and the ammonia abundance between 4 and 8 bar. We find a linear relationship between the cloud opacity and the continuum level of the spectrum. For a given radiance level of an individual spectrum, significant variations in the water vapor relative humidity are seen. However, no clear evidence for a relationship between the cloud opacity and the water relative humidity is seen. A cloud structure similar to that measured by the Galileo entry probe, with no significant cloud opacity below 2 bar, is adequate. The air in the hot spots is found to be overall dry, consistent with the probe measurements. None of the considered spectra show water vapor relative humidities exceeding 10%. Significant spatial variations of the water vapor relative humidity are found, and the distribution over the observed hot spot regions is complex. Because of a low sensitivity of the NIMS spectra to ammonia, uncertainties in the derived ammonia abundance are much higher than for water. There is, however, a possible trend in all the observed hot spots toward more ammonia inside than outside the hot spots at the sounded pressure levels.


Planetary and Space Science | 1993

Search for spatial variations of the H2O abundance in the lower atmosphere of Venus from NIMS-Galileo

P. Drossart; B. Bézard; Th. Encrenaz; E. Lellouch; M. Roos; F. W. Taylor; A.D. Collard; Simon B. Calcutt; Jordan Pollack; David Harry Grinspoon; Robert W. Carlson; Kevin H. Baines; L. W. Kamp

Abstract The spectroscopic data of the Near-Infrared Mapping Spectrometer (NIMS), recorded during the Galileo flyby of Venus, are analysed to retrieve the water vapour abundance variations in the lower atmosphere of Venus at night. The 1.18 μm spectral window, which probes altitude levels below 20 km, is used for this purpose. Constraints on the CO2 continuum and far-wing opacity from existing ground-based high-resolution observations are included in the modelling of the NIMS spectra. The NIMS measurements can be fitted with a water vapour mixing ratio of 30 ± 15 ppm, in agreement with analyses of ground-based nightside observations. The water vapour abundance shows no horizontal variations exceeding 20% over a wide latitude range (40°S, 50°N) on the nightside of Venus. Within the same selection of NIMS spectra, a large enhancement in the O2 fluorescence emission at 1.27 μm is observed at a latitude of 40°S, over a spatial area about 100 km wide.

Collaboration


Dive into the L. W. Kamp's collaboration.

Top Co-Authors

Avatar

Robert W. Carlson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

William D. Smythe

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kevin H. Baines

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

F. Leader

University of California

View shared research outputs
Top Co-Authors

Avatar

Rosaly M. C. Lopes

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis L. Matson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Samuel Gulkis

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael A. Janssen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge